Answer: The gravitational force Fg exerted on the orbit by the planet is Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Explanation:
Gravitational Force Fg = GMm/r2----1
Where G is gravitational constant
M Mass of the planet, m mass of the orbit and r is the distance between the masses.
Since the circular orbit move around the planet, it means they do not touch each other.
The distance between two points on the circumference of the two massesb is given by d, while the distance from the radius of each mass to the circumferences are R1 and R2 from the question.
Total distance r= (R1 + d + R2)^2---2
Recall, density rho =
Mass M/Volume V
Hence, mass of planet = rho × V
But volume of a sphere is 4/3πr3
Therefore,
Mass M of planet = rho × 4/3πr3
=4/3πr3rho in kg
From equation 1 and 2
Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Answer:
98.1 Joule
Explanation:
Solution,
⇒Mass(m)=10kg
⇒Weight(F)=Mg=10×9.81=98.1N
⇒Distance(d)=1m
Now,
Work done=F×d
=98.1×1
=98.1J
Answer:
Dear user,
Answer to your query is provided below
Acceleration is zero because of no change in velocity.
Explanation:
Remember that velocity is a vector quantity and a vector can change in 3 ways
•Magnitude only
•Direction only
•Both magnitude and direction.
Now the magnitude of velocity (speed) can stay constant while the direction is changing. This is the case in circular motion.
In the question above, it is mentioned that the girl is moving along a straight road. Therefore no change in direction of velocity.
To look for displacement, just draw a vector from your beginning stage to your last position and settle for the length of this line. So we begin by drawing a line to the north which is 30 ft, since it is north, the line is going up, then it move 5 ft to the south, so put a line going down, so we are in 25 ft, North so that would be the answer.