Gases............<span>In gases, the atoms are much more spread out than in solids or liquids, and the atoms collide randomly with one another. A gas </span>will<span> fill any container, but if the container is not sealed, the gas </span>will<span> escape. Gas </span>can be compressed<span> much more easily than a liquid or solid</span>
Answer:
The volume is decreasing at 160 cm³/min
Explanation:
Given;
Boyle's law, PV = C
where;
P is pressure of the gas
V is volume of the gas
C is constant
Differentiate this equation using product rule:

Given;
(increasing pressure rate of the gas) = 40 kPa/min
V (volume of the gas) = 600 cm³
P (pressure of the gas) = 150 kPa
Substitute in these values in the differential equation above and calculate the rate at which the volume is decreasing (
);
(600 x 40) + (150 x
) = 0

Therefore, the volume is decreasing at 160 cm³/min
Answer:
A
Explanation:
Please see the attached picture for the full solution.
Since we are only concerned about the decrease in gravitational potential energy of the car, we look at the decrease in height of the car as it moves from point X to point Y, instead of the distance travelled by the car.
Answer:
the object has least potential energy at mean position of the SHM
Explanation:
If a block is connected with a spring and there is no resistive force on the system
In this case the total energy of the system is always conserved and it will change from one form to another form
So here we will say that
Kinetic energy + Potential energy = Total Mechanical energy
As we can say that total energy is conserved so here we have least potential energy when the system has maximum kinetic energy
So here we also know that at mean position of the SHM the system has maximum speed and hence maximum kinetic energy.
So the object has least potential energy at mean position of the SHM
The answer is B. Bye because B those study speed.