Answer: Protons
WHY?
Changing electrons will only result in the same element having different charges and hence, changing it's chemical properties.
Changing neutrons will not change an element but it will result in an isotope forming instead. (Isotopes are elements of the same type with different neutron numbers.)
However, changing the proton number would immediately change the nucleus composition, resulting in a change in element with a negative charge as there are more electrons than protons. This results in a expansion in valance electrons's distance from the nucleus. This results in a change in chemical properties of the element.
Therefore, a change in Protons is the answer.
Answer:
Heat energy required (Q) = 10.736 KJ
Explanation:
Given:
Specific heat of ethanol (C) = 2.44 J/g °C
Mass of ethanol (M) = 50 gram
Initial temperature (T1) = -20°C
Final temperature (T1) = 68°C
Find:
Heat energy required (Q) = ?
Computation:
Change in temperature (ΔT) = 68°C - (-20°C)
Change in temperature (ΔT) = 88°C
Heat energy required (Q) = mC(ΔT)
Heat energy required (Q) = (50)(2.44)(88)
Heat energy required (Q) = 10,736 J
Heat energy required (Q) = 10.736 KJ
4 sig fig in that expression
Answer:
Explanation:
CH₃COOH + NaOH = CH₃COONa + H₂O .
42.5 mL of .115 M of NaOH will contain .0425 x .115 moles of NaOH
= 48.875 x 10⁻⁴ moles NaOH
It will react with same number of moles of acetic acid
So number of moles of acetic acid in 3.45 mL = 48.875 x 10⁻⁴
number of moles of acetic acid in 1000 mL = 48.875 x 10⁻⁴ x 10³ / 3.45 moles
= 1.4167 moles
= 1.4167 x 60 gram
= 85 grams .
So 85 grams of acetic acid will be contained in one litre of acetic acid.
Answer:
The solution becomes diluted.
Explanation:
When you add water to a solution, the number of moles of the solvent stays the same while the volume increases. Therefore, the molarity decreases.
Hope this helps!