Answer:
3.03 g
Explanation:
The first thing to do here is figure out the chemical formula for aluminium hydroxide.
Aluminium is located in group
13
of the periodic table, and forms
3
+
cations,
Al
3
+
. The hydroxide anion,
OH
−
, carries a
1
−
charge, which means that a formula unit of aluminium hydroxide will look like this
[
Al
3
+
]
+
3
[
OH
−
]
→
Al
(
OH
)
3
Now, you can figure out the mass of hydrogen present in
1
mole of aluminium hydroxide by first determining how many moles if hydrogen you get in
1
mole of aluminium hydroxide.
Since
1
mole of aluminium hydroxide contains
3
moles of hydroxide anions, which in turn contain
1
mole of hydrogen each, you can say that you will have
1 mole Al
(
OH
)
3
→
3
a
moles OH
−
→
3
a
moles H
The problem tells you that the molar mass of hydrogen is equal to
1.01 g mol
−
1
. This means that
1
mole of hydrogen has a mass of
1.01 g
.
You can thus say that one mole of aluminium hydroxide contains
3
moles H
⋅
1.01 g
1
mole H
=
a
a
3.03 g H
a
a
∣
∣
I'll leave the answer rounded to three sig figs. Btw my sister calculated this oof
Depending upon the clumping reaction with anti A , anti B and anti Rh antibodies the blood types are determined.
Explanation:
Agglutination (clumping) will occur when blood that contains the particular antigen is mixed with the particular antibody.
A+ have Agglutination with Anti-A ,Anti-Rh and No agglutination with Anti-B.
A- have Agglutination with Anti-A and No agglutination with Anti-B and Anti-Rh.
B+ have Agglutination with Anti-B Anti-Rh and No agglutination with Anti-A.
B- have Agglutination with Anti-B and No agglutination with Anti-B and Anti-Rh.
Rh+ have Agglutination with Anti-A and Anti-Rh and No agglutination with Anti-B.
Rh- have No Agglutination with Anti-A and Anti-B and Anti-Rh.
An atom typically has a neutral charge, as in most cases an atom has the same amount of positively charged protons as it does negatively charged electrons.
Atoms that do not have the same amount of electrons as protons are known as isotopes.
Answer:Q=mcΔT Q = mc Δ T , where Q is the symbol for heat transfer, m is the mass of the substance, and ΔT is the change in temperature. The symbol c stands for specific heat and depends on the material and phase. The specific heat is the amount of heat necessary to change the temperature of 1.00 kg of mass by 1.00ºC.
Explanation: