1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeX [460]
2 years ago
10

Consider a 20 cm thick granite wall with a thermal conductivity of 2.79 W/m·K. The temperature of the left surface is held const

ant at 50°C, whereas the right face is exposed to a flow of 22°C air with a convection heat transfer coefficient of 15 W/m2·K. Neglecting heat transfer by radiation, find the right wall surface temperature and the heat flux through the wall.
Physics
1 answer:
kozerog [31]2 years ago
6 0

Answer:

The right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²

Explanation:

Thickness of the wall is  L=  20cm = 0.2m

Thermal conductivity of the wall is  K = 2.79 W/m·K

Temperature at the left side surface is T₁ =  50°C

Temperature of the air is T = 22°C

Convection heat transfer coefficient is  h = 15 W/m2·K

Heat conduction process through wall is equal to the heat convection process so

Q_{conduction} = Q_{convection}

Expression for the heat conduction process is

Q_{conduction} = \frac{K(T_1 - T)}{L}

Expression for the heat convection process is

Q_{convection} = h(T_2 - T)

Substitute the expressions of conduction and convection in equation above

Q_{conduction} = Q_{convection}

\frac{K(T_1 - T_2)}{L} = h(T_2 - T)

Substitute the values in above equation

\frac{2.79(50- T_2)}{0.2} = 15(T_2 - 22)\\\\T_2 = 35.5^\circC

Now heat flux through the wall can be calculated as

q_{flux} = Q_{conduction} \\\\q_{flux}  = \frac{K(T_1 - T_2)}{L}\\\\q_{flux}  = \frac{2.79(50 - 35.5)}{0.2}\\\\q_{flux} = 202.3W/m^2

Thus, the right wall surface temperature and heat flux through the wall is 35.5°C and 202.3W/m²

You might be interested in
A 1090 kg car has four 12.7 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to ro
max2010maxim [7]

Answer:

\frac{KE_{Rotational}}{KE_{Total}} = 0.018

Explanation:

To develop this exercise we proceed to use the kinetic energy equations,

In the end we replace

KE_{Total}=KE_{Translational}+KE_{Rotational}

KE_{Total}=\frac{1}{2}m_{car}+4*\frac{1}{2}*I*(\frac{v}{r})^2

Here

I=\frac{1}{2}m_{wheels}*r^2 meaning the 4 wheels,

So replacing

KE_{Rotational}=4\frac{1}{2}*(\frac{1}{2}m_{wheels}*r^2)*(\frac{v}{r})^2=m*v^2

So,

\frac{KE_{Rotational}}{KE_{Total}} = \frac{m_{wheels}*v^2}{\frac{1}{2}m_{car}*v^2+m_{wheels}*v^2}

\frac{KE_{Rotational}}{KE_{Total}} = \frac{m_{wheels}}{\frac{1}{2}m_{car}+m_{wheels}}

\frac{KE_{Rotational}}{KE_{Total}} =  \frac{10}{545+10}

\frac{KE_{Rotational}}{KE_{Total}} = 0.018

3 0
3 years ago
Choose all that apply. Solids, liquids, and gases can be distinguished by their:
vodomira [7]
I believe its by there shape
8 0
3 years ago
Read 2 more answers
A museum sets up a display of fluorescent minerals. Which best describes how electromagnetic waves can be used to enhance the di
Volgvan

Answer:c

Explanation:

4 0
3 years ago
Except for the nodes on a standing wave, what is the frequency f of the points executing simple harmonic motion?
Katen [24]

Take into account that in a standing wave, the frequency f of the points executing simple harmonic motion, is simply a multiple of the fundamental harmonic fo, that is:

f = n·fo

where n is an integer and fo is the first harmonic or fundamental.

fo is given by the length L of a string, in the following way:

fo = v/λ = v/(L/2) = 2v/L

becasue in the fundamental harmonic, the length of th string coincides with one hal of the wavelength of the wave.

6 0
1 year ago
Having just enough weight to achieve all three states of buoyancy with only minor adjustments in the water is the definition of:
eduard

Answer:

Proper weighting

Explanation:

Proper weighing involves the condition of a scuba diver that is fully geared having a near empty tank and the BCD emptied with a held breadth is expected to float at eye level

The fundamental of adequate or good buoyancy of a scuba diver is to ensure proper weighting when diving, With proper weighting, there is more control for the diver when a safety stop is required. There is less need to carry excess weight that increases drag and gas consumption.  

6 0
3 years ago
Other questions:
  • Energy stored in the bonds that hold together the atoms and molecules of all substances is called A. mechanical energy. B. elect
    11·2 answers
  • A moving small car has a head-on collision with a large stationary truck 7.3 times the mass of the car. Which statement is true
    13·2 answers
  • An object was released from rest at height of 1.65 m with respect to ground. Determine the time it takes the object to reach the
    8·1 answer
  • Ever wonder what Albert Einstein’s formula E = MC2 means? Don’t worry, your teacher doesn’t really understand that one either, b
    6·1 answer
  • What is one advantage of doing a feild experiment instead of a lobortory expirament
    6·1 answer
  • a student weighs 1200N they are standing in an elevator that is moving downwards at a constant speed of
    11·2 answers
  • An iron nail having threads along its cylindrical surface is​
    12·1 answer
  • Is telekinesis real??? I really wanna start learning it!
    15·1 answer
  • Students set up a controlled experiment (please help I am so tired and unable to function lol)
    9·1 answer
  • Assume that the ammeter in the figure below is removed and the current that flows through the 4.0Ω path, I3, is unknown. Determi
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!