<h3>
Answer:</h3>
1031.4 Calories.
<h3>
Explanation:</h3>
We are given;
Mass of the copper metal = 50.0 g
Initial temperature = 21.0 °C
Final temperature, = 75°C
Change in temperature = 54°C
Specific heat capacity of copper = 0.382 Cal/g°C
We are required to calculate the amount of heat in calories required to raise the temperature of the copper metal;
Quantity of heat is given by the formula,
Q = Mass × specific heat capacity × change in temperature
= 50.0 g × 0.382 Cal/g°C × 54 °C
= 1031.4 Calories
Thus, the amount of heat energy required is 1031.4 Calories.
Yes because without movement the tow truck will not be moved with 15,000 N
Answer:
A jump occurs when a core electron is removed.
Explanation:
A jump in ionization energy occurs when a core electron is removed. A large jump in the ionization energy easily be seen from the electronic configuration of an element.
For Beryllium, the electronic configuration of is 1s2 2s2.
There are two valence electrons in the outermost shell hence the ionization energy data for beryllium will show a sudden jump or increase in going from the second to the third ionization energy owing to the removal of a core electron
The electronic configuration for Nitrogen is 1s2 2s2 2p3. Five valence electrons are found in the outermost shell so the ionization energy data for nitrogen will show a sudden jump or increase in going from the fifth to sixth ionization energy because of the removal of a core electron
The electronic configuration of oxygen is 1s2 2s2 2p4. There are six valence electrons hence ionization energy for oxygen atom will show a sudden jump or increase in going from the sixth to the seventh ionization energy because of the removal of a core electron
The electronic configuration of Lithium is 1s2 2s1
There is one valence electron in its outermost shell so its ionization energy data will show a sudden jump or increase in going from the first to the second ionization energy because of the removal of a core electron.
I Think that the answer is 15.2096 Kilograms, but I might be wrong.