Answer:
See explanation
Explanation:
The reaction that we are considering here is quite a knotty reaction. It is difficult to decide if the mechanism is actually E1 or E2 since both are equally probable based on the mass of scientific evidence regarding this reaction. However, we can easily assume that the methylenecyclohexane was formed by an E1 mechanism.
Looking at the products, one could convincingly assert that the reaction leading to the formation of the two main products proceeds via an E1 mechanism with the formation of a carbocation intermediate as has been shown in mechanism attached to this answer. Possible rearrangement of the carbocation yields the 3-methylcyclohexene product.
Answer:
- 0.99 °C ≅ - 1.0 °C.
Explanation:
- We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
m is the molality of the solution (m = moles of solute / kg of solvent = (23.5 g / 180.156 g/mol)/(0.245 kg) = 0.53 m.
<em>∴ ΔTf = (Kf)(m)</em> = (-1.86 °C/m)(0.53 m) =<em> - 0.99 °C ≅ - 1.0 °C.</em>
Answer:
I think c biological processes
Answer:
The answer to your question is 0.5 moles
Explanation:
Data
moles of Glucose = ?
moles of carbon dioxide = 3
Balanced chemical reaction
6CO₂ + 6H₂O ⇒ C₆H₁₂O₆ + 6O₂
Process
To solve this problem, use proportions, and cross multiplication.
Use the coefficients of the balanced equation.
6 moles of CO₂ ----------------- 1 mol of C₆H₁₂O₆
3 moles of CO₂ ---------------- x
x = (3 x 1) / 6
-Simplification
x = 3/6
-Result
x = 0.5 moles of Glucose
Answer: B. Adding more protons to a positively charged body until the number of protons matches the number of electrons
Explanation:
took test got it right