<h3>
1.</h3>
C) The volume of the gas is proportional to the number of moles of gas particles.
The Avogadro's law applies to ideal gases with constant pressure and temperature. By that law, the volume of an ideal gas is proportional to the number of moles of particles in that gas.
<h3>2.</h3>
B) The gas now occupies less volume, and the piston will move downward.
Boyle's Law applies to ideal gases with a constant temperature. The volume of an ideal gas is inversely related to its pressure. A high pressure drives gas particles together, such that they occupy less volume. The gas trapped inside the piston has a smaller volume. As a result, the the piston will move downward.
Alternatively, consider the forces acting on the piston. Both the atmosphere and gravity are dragging the piston down. In order for it to stay in place, the gas below it must exert a pressure to balance the two forces. Now the pressure from outside has increased. The gas inside needs to increase its pressure. It needs a smaller volume to create that extra pressure. As a result, its volume will decrease, and the piston will move downwards.
Electrons(shiwhgsvdjdjwvndkshwgvsbdjdhhagdbdjjshwvwb)
Answer:
Approximately
.
Explanation:
Start by finding the concentration of
at equilibrium. The solubility equilibrium for
.
The ratio between the coefficient of
and that of
is
. For
Let the increase in
concentration be
. The increase in
concentration would be
. Note, that because of the
of
, the concentration of
- The concentration of
would be
. - The concentration of
would be
.
Apply the solubility product expression (again, note that in the equilibrium, the coefficient of
is two) to obtain:
.
Note, that the solubility product of
,
is considerably small. Therefore, at equilibrium, the concentration of
Apply this approximation to simplify
:
.
.
Calculate solubility (in grams per liter solution) from the concentration. The concentration of
is approximately
, meaning that there are approximately
of
.
As a result, the maximum solubility of
in this solution would be approximately
.
Answer:
The molar mass of any substance is the mass in grams of one mole of representative particles of that substance. ... In such a conversion, we use the molar mass of a substance as a conversion factor to convert mole units into mass units (or, conversely, mass units into mole units).
Explanation:
it will sink
Explanation:
the solid iron will sink because it is dense than the liquid iron I will sink and it will melt