A mole of any gas occupied 22.4 L at STP. So, the number of moles of nitrogen gas at STP in 846 L would be 846/22.4 = 37.8 moles of nitrogen gas.
Alternatively, you can go the long route and use the ideal gas law to solve for the number of moles of nitrogen given STP conditions (273 K and 1.00 atm). From PV = nRT, we can get n = PV/RT. Plugging in our values, and using 0.08206 L•atm/K•mol as our gas constant, R, we get n = (1.00)(846)/(0.08206)(273) = 37.8 moles, which confirms our answer.
Explanation:
The law of conservation of mass states that the total mass of the products is equal to the total of the reactants.
A chemical change occurs because of a chemical reaction.
In a chemical reaction, the reactants are the starting substances and the products is the finishing substances. The amount of each type of atoms to start with and end with are also equal.
No matter disappears after a chemical reaction.
Answer:
The amount of matter in the new substances is the same as the original.
This is known as the law of conservation of mass.
Answer:
Electrons
Explanation:
In an atom there would be three subatomic particles: Neutrons, electrons, protons. The smallest and lightest in terms of mass is electrons. This is because the nucleus is comprised of the protons and the neutrons, these have a greater mass than electrons as electrons has very little mass that can considered to be 0.
Answer: they giving you some hard question
Explanation:
i dont know know what the answer is do you have any answer options
Answer:
H2O
Explanation:
PLS MARK ME TO THE BRAINLIST