The magnitude of the electrostatic force between two charges is given by:

where
ke is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
We can see that the magnitude of the force is directly proportional to the charges. This means that when one of the charges is doubled, the magnitude of the electrostatic force will double as well, so the correct answer is
A) <span>The magnitude of the electrostatic force doubles</span>
1<span>Define the equation for the force of gravity that attracts an object, <span>Fgrav = (Gm1m2)/d2</span>
2. </span>Use the proper metric units.
3. Determine the mass of the object in question.
4. <span>Measure the distance between the two objects
5. </span><span>Solve the equation
</span>
The strength of the fireman in vertical direction will be given by F = m * g. Then, the work done will be given by definition by W = F * d. Substituting the expression of the Force in that of the work, we have that the work will be W = m * g * d. Substituting the given values and assuming that g = 10m / s ^ 2, we have a total work of W = (73) * (10) * (9) = 6570 J
Satellite. think of the moon.
Hope this helps!
Vote me Brainliest!