Vertical forces:
There is a force of 579N acting upward, and a force of 579N
acting downward.
The vertical forces are balanced ... they add up to zero ...
so there's no vertical acceleration.
Not up, not down.
Horizontal forces:
There is a force of 487N acting to the left, and a force of 632N
acting to the right.
The net horizontal force is
(487-left + 632-right) - (632-right - 487-right) = 145N to the right.
The net force on the car is all to the right.
The car accelerates to the right.
Answer:
Impulse = 322.5[kg*m/s], the answer is D
Explanation:
This method it is based on the principle of momentum and the amount of movement; and used to solve problems involving strength, mass, speed and time.
If units of the SI are used, the magnitude of the impulse of a force is expressed in N * s. however, when remembering the definition of the newton.

Now replacing the values on the following equation that express the definition of impulse
![Impulse = Force * Time\\\\Impulse = 215 * 1.5 = 322.5 [kg*m/s]](https://tex.z-dn.net/?f=Impulse%20%3D%20Force%20%2A%20Time%5C%5C%5C%5CImpulse%20%3D%20215%20%2A%201.5%20%3D%20322.5%20%5Bkg%2Am%2Fs%5D)
Answer:
The kinetic energy of the particle as it moves through point B is 7.9 J.
Explanation:
The kinetic energy of the particle is:
<u>Where</u>:
K: is the kinetic energy
: is the potential energy
q: is the particle's charge = 0.8 mC
ΔV: is the electric potential = 1.5 kV
Now, the kinetic energy of the particle as it moves through point B is:


Therefore, the kinetic energy of the particle as it moves through point B is 7.9 J.
I hope it helps you!
Answer:
Explanation:
Force on a moving charge is given by the following relation
F = q ( v x B )
for proton
q = e , v = vi , B = Bk
F = e ( vi x Bk )
= Bev - j
= - Bevj
The direction of force is along negative of y axis or -y - axis.
for electron
q = - e , v = vi , B = Bk
F = - e ( vi x Bk )
= - Bev - j
= Bevj
The direction of force is along positive of y axis or + y - axis.