1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorC [24]
2 years ago
10

Which cells in the immune system identify pathogens and distinguish one pathogen from another?

Physics
2 answers:
FinnZ [79.3K]2 years ago
7 0

Answer:

T cell

Explanation:

In-s [12.5K]2 years ago
7 0
The answer is now bbzbdbxjxjxbd
You might be interested in
What is the purpose of an experiment design?
Eddi Din [679]
An experimental design is used to assign variables for testing. In contrast to a control design where nothing is changed, the experimental design allows you to test various new inputs to see how they would vary from the original results.
5 0
3 years ago
The octet rule states that in chemical compounds atoms tend to have
Marrrta [24]

Answer:

In chemical compounds, atoms tends to have the electron configuration of a noble gas.

Explanation:

The noble gases are unreactive because of their electron configurations. This noble gas neon has the electron configuration of 1s22s22p6 . It has a full outer shell and cannot incorporate any more electrons into the valence shell.

The octet rule states that atoms tend to form compounds in ways that give them eight valence electrons and thus the electron configuration of a noble gas. An exception to an octet of electrons is in the case of the first noble gas, helium, which only has two valence electrons.

4 0
2 years ago
Read 2 more answers
Help for brainlist easy science plz
zalisa [80]

Answer:

the pics upside down fam

Explanation:

6 0
2 years ago
Read 2 more answers
The electric potential at the origin of an xy-coordinate system is 40 V. A -8.0-μC charge is brought from x = +∞ to that point.
vredina [299]

Answer:

-320 μJ.

Explanation:

Consider a point with an electrical charge of q. Assume that V is the electrical potential at the position of that charge. The electrical potential of that point charge will be equal to:

\text{Potential Energy} = q \cdot V.

Keep in mind that since both q and V might not be positive, the size of the electrical potential energy might not be positive, either.

For this point charge,

  • q = \rm -8.0\; \mu C; (that's -8.0 microjoules, which equals to \rm -8.0\times 10^{-6}\; J)
  • V = \rm 40\; V.

Hence its electrical potential energy:

\text{Potential Energy} = q\cdot V = \rm (-8.0\; \mu C) \times 40\; V = -320\; \mu J.

Why is this value negative? The electrical potential energy of a charge is equal to the work needed to bring that charge from infinitely far away all the way to its current position. Also, negative charges are attracted towards regions of high electrical potential. Bringing this \rm -8.0\; \mu C negative charge to the origin will not require any external work. Instead, this process will release 320 μJ of energy. As a result, the electrical potential energy is a negative value.

7 0
3 years ago
The heat capacity of object B is twice that of object A. Initially A is at 300 K and B at 450 K. They are placed in thermal cont
ivann1987 [24]

Answer:

The final temperature of both objects is 400 K

Explanation:

The quantity of heat transferred per unit mass is given by;

Q = cΔT

where;

c is the specific heat capacity

ΔT is the change in temperature

The heat transferred by the  object A per unit mass is given by;

Q(A) = caΔT

where;

ca is the specific heat capacity of object A

The heat transferred by the  object B per unit mass is given by;

Q(B) = cbΔT

where;

cb is the specific heat capacity of object B

The heat lost by object B is equal to heat gained by object A

Q(A) = -Q(B)

But heat capacity of object B is twice that of object A

The final temperature of the two objects is given by

T_2 = \frac{C_aT_a + C_bT_b}{C_a + C_b}

But heat capacity of object B is twice that of object A

T_2 = \frac{C_aT_a + C_bT_b}{C_a + C_b} \\\\T_2 = \frac{C_aT_a + 2C_aT_b}{C_a + 2C_a}\\\\T_2 = \frac{c_a(T_a + 2T_b)}{3C_a} \\\\T_2 = \frac{T_a + 2T_b}{3}\\\\T_2 = \frac{300 + (2*450)}{3}\\\\T_2 = 400 \ K

Therefore, the final temperature of both objects is 400 K.

4 0
2 years ago
Other questions:
  • A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components Ex = Ey = 0 and Ez = (4.3
    9·1 answer
  • Explain how the technology of doing math and adding numbers has changed over time this is science
    6·1 answer
  • How many microphones are in a megaphone?
    10·1 answer
  • The minimum energy needed to eject an electron from a sodium atom is 4.41 x 10-19 j. what is the maximum wavelength of light, in
    11·1 answer
  • An object has a relativistic momentum that is 8.30 times greater than its classical momentum. What is its speed?
    7·2 answers
  • The electric field in a region of space has the components Ey = Ez = 0 and Ex = (4.00 N/C · m) x. Point A is on the y axis at y
    12·1 answer
  • An electron that has a velocity with x component 1.6 × 10^6 m/s and y component 2.6 × 10^6 m/s moves through a uniform magnetic
    15·1 answer
  • I this right....????
    11·2 answers
  • Which of the following is NOT a product of science?
    13·2 answers
  • Help on these two thanks
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!