Ans: R = Ball Travelled = 92.15 meters.
Explanation:
First we need to derive that formula for the "range" in order to know how far the ball traveled before hitting the ground.
Along x-axis, equation would be:

Since there is no acceleration along x-direction; therefore,

Since

and

=0; therefore above equation becomes,

--- (A)
Now we need to find "t", and the time is not given. In order to do so, we shall use the y-direction motion equation. Before hitting the ground y ≈ 0 and a = -g; therefore,
=>

=>

Since

; therefore above equation becomes,

Put the value of t in equation (A):
(A) =>

Where x = Range = R, and

; therefore above equation becomes:
=>

Now, as:

and

°
and g = 9.8 m/(s^2)
Hence,
Ans: R = 92.15 meters.-i
<h3>One reason we should know what the directions of the forces acting on an object is so we can know if we have to add or subtract. same = add together, opposite = subtract from each other. Also if we don't pay attention to the direction the Net force will be wont be accurate. There will be factors that will upset the calculation.So we must know the direction of the two forces because we have to know if we are adding or subtracting and if the answer is accurate. </h3>
<em>I hope this helps!.</em>
Here we can use the work energy theorem

here we know that

as it come to rest finally



now work done by friction force will be given as


Work done by spring force is given as



so now plug in all data above


so above is the friction coefficient
Answer:
Solid-state
Explanation:
A solid-state device can be defined as a crystalline material that is typically made up of semiconductor and as such controls the number and rate of flow of charged carriers such as holes or electrons.
Some examples of a solid-state device are light emitting diodes (LED), integrated circuit (IC), Transistors, liquid crystal display (LCD) etc.
A solid-state device such as a transistor, refers to a semiconductor component that is used to control the flow of voltage or current and as a gate (switch) for electronic signals. Thus, a transistor allows for the amplification, control and generation of electronic signals in a circuit.
Hence, solid-state devices need constant power to operate. The timing functions are initiated by the presence or absence of a separate "trigger" signal.
Basically, these solid-state devices use the optical and electrical properties of semiconductor components such as transistors, triacs, thyristors, diodes to perform its input-output switching and isolation functions.