1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
11

Listed following are the names and mirror diameters for six of the world’s greatest reflecting telescopes used to gather visible

light. Rank the telescopes from left to right based on their light-collecting area from largest to smallest. For telescopes with more than one mirror, rank based on the combined light-collecting area of the mirrors.
- Large binocular telescope with two 8.4 m mirrors
- Keck 1 one 10 - m mirror
- Hobby-Ebberly one 9.2-m mirror
- Subaru one 8.3 m mirror
- Gemini North one 8-m mirror
- Magellan 2 one 6.5 m mirorr
Physics
1 answer:
ziro4ka [17]3 years ago
3 0

Answer:

Large binocular telescope, Keck 1 telescope, Hobby-Ebberly telescope, Subaru telescope, Gemini North telescope, Magellan 2 telescope

Explanation:

How much light a telescope can collect depends on its diameter, since in a bigger area more photons will be collected.    

Remember that in a circle the area is defined as:

A = \pi r^{2}  (1)

Where A is the area and r is its radius.

However, the radius can be determined by means of its diameter.

     

d = 2r

r = \frac{d}{2} (1)

Where d is its diameter.

An example of this is when a person is collecting raindrops with a bucket and with a cup. Since the bucket has a bigger area than the cup, it will collect more raindrops by unit of time. In this scenario the raindrops represent the photons.  

   

To determine the light collecting area of each telescope, equation 2 will be replaced in equation 1.

A = \pi (\frac{d}{2})^{2}  (3)

Case for Large binocular telescope:

A_{mirror1} = \pi (\frac{8.4m}{2})^{2}    

A_{mirror1} = 55.41m        

For the second mirror will be the same value

A = A_{mirror1}+A_{mirror2}  

A = 55.41m+55.41m

A= 110.82m

Case for Keck 1 telescope:

A = \pi (\frac{10m}{2})^{2}    

A = 78.53m  

Case for Hobby-Ebberly telescope:

A = \pi (\frac{9.2m}{2})^{2}    

A = 66.47m  

Case for Subaru telescope:

A = \pi (\frac{8.3m}{2})^{2}    

A = 54.10m  

Case for Gemini North telescope:

A = \pi (\frac{8m}{2})^{2}    

A = 50.26m  

Case for Magellan 2 telescope:

A = \pi (\frac{6.5m}{2})^{2}    

A = 33.18m  

Hence, they may be rank in the following way:

Large binocular telescope, Keck 1 telescope, Hobby-Ebberly telescope, Subaru telescope, Gemini North telescope, Magellan 2 telescope.

<em>Key term:</em>

<em>Photons: particles that constitute light. </em>

You might be interested in
A train is pulling four train cars and each car has a mass of 40,000 kg. The train is accelerating at 1.1 m/s^2. What is the for
IgorLugansk [536]

Answer:

176,000 N

Explanation:

Newton's second law:

∑F = ma

F = (4 × 40,000 kg) (1.1 m/s²)

F = 176,000 N

8 0
3 years ago
Read 2 more answers
Determine the magnitude of the resultant force acting on a 1.5 −kg particle at the instant t=2 s, if the particle is moving alon
Phoenix [80]

Answer:

F = 63N

Explanation:

M= 1.5kg , t= 2s, r = (2t + 10)m and

Θ = (1.5t² - 6t).

magnitude of the resultant force acting on 1.5kg = ?

Force acting on the mass =

∑Fr =MAr

Fr = m(∇r² - rθ²) ..........equation (i)

∑Fθ = MAθ = M(d²θ/dr + 2dθ/dr) ......... equation (ii)

The horizontal path is defined as

r = (2t + 10)

dr/dt = 2, d²r/dt² = 0

Angle Θ is defined by

θ = (1.5t² - 6t)

dθ/dt = 3t, d²θ/dt² = 3

at t = 2

r = (2t + 10) = (2*(2) +10) = 14

but dr/dt = 2m/s and d²r/dt² = 0m/s

θ = (1.5(2)² - 6(2) ) = -6rads

dθ/dt =3(2) - 6 = 0rads

d²θ/dt = 3rad/s²

substituting equation i into equation ii,

Fr = M(d²r/dt² + rdθ/dt) = 1.5 (0-0)

∑F = m[rd²θ/dt² + 2dr/dt * dθ/dt]

∑F = 1.5(14*3+0) = 63N

F = √(Fr² +FΘ²) = √(0² + 63²) = 63N

7 0
3 years ago
Help with 3 and check the other ones please :(
Kobotan [32]

Answer:

number 3 The wind because the wind has strong pressure which causes to change peoples directions in where they are going

Explanation:

hope this helped by the way i think you answered b and 4 i don't know if this is a test and i sent this at the wrong time :(

4 0
3 years ago
Read 2 more answers
A woman is sitting in her hotel room when there is a knock at the door. She opened the door to see a man whom she had never seen
Allisa [31]
Ooh. You don't knock on your own hotel door- <span> a knock at the door is your key word.
</span>x
5 0
3 years ago
Read 2 more answers
Anyone know a GOOD show on Netflix please kid shows pleaseeeee
Afina-wow [57]

Answer:

like horror? or action haha

Explanation:

7 0
2 years ago
Read 2 more answers
Other questions:
  • A 0.60-kg object is suspended from the ceiling at the end of a 2.0-m string. When pulled to the side and released, it has a spee
    8·1 answer
  • If a star is moving away from you at a constant speed, how do the wavelengths of the absorption lines change as the star gets fa
    6·1 answer
  • Los resortes tienen masa, ¿El periodo y la frecuencia reales son mayores que los dados en las ecuaciones para una masa oscilante
    14·1 answer
  • An unbalanced force of 500 N is applied to a 75 kg object. What is the acceleration of the object?
    14·2 answers
  • Oceanographers use submerged sonar systems, towed by a cable from a ship, to map the ocean floor. In addition to their downward
    10·1 answer
  • Plz plz plz answer for the 7th question I'll die if I don't do it I am bad in physics plz plz plz
    9·1 answer
  • Explain what the ionsphere is and how it interacts with some radio waves
    11·1 answer
  • In the chemical equation above, the small number after the O in 1202 represent —
    10·1 answer
  • Which of the following equations illustrates the law of conservation of<br> matter?
    15·1 answer
  • Does water not have anomalous expansion?​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!