The frequency of the wave is 
Explanation:
The frequency, the wavelength and the speed of a wave are related by the following equation:

where
c is the speed of the wave
f is the frequency
is the wavelength
For the radio wave in this problem,


Therefore, the frequency is:

Learn more about waves here:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
Answer:
its a solid but can flow
Explanation:
those answers to choose from are wrong
In this question, you're determining the time (t) taken for an object to fall from a distance (d).
The equation to represent this is:
Time equals the square root of 2 times the distance divided by the gravitational force of earth.
In equation from it looks like this (there isn't an icon to represent square root so just pretend like there's a square root there):
t = 2d/g (square-rooted)
d = 8,848m and g = 9.8m/s
Now plug in the information we have:
t = 2 x 8,848m/9.8m/s (square-rooted)
The first step is to multiply 2 times 8,848m:
t = 17,696m/9.8m/s (square-rooted)
Now divide 9.8m/s by 17,696m (note that the two m's (meters) cancels out leaving you with only s (seconds):
t = 1805.72s (square-rooted)
Now for the last step, find the square root of the remaining number:
t = 42.5s
So the time it takes the ball to drop from the height (distance) of 8,848 meters, and falling with the gravitational pull of 9.8 meters per second is 42.5 seconds.
I hope this helps :)
m = mass of the car moving in horizontal circle = 1750 kg
v = Constant speed of the car moving in the horizontal circle = 15 m/s
r = radius of the horizontal circular track traced by the car = 45.0 m
F = magnitude of the centripetal force acting on the car
To move in a circle . centripetal force is required which is given as
F = m v²/r
inserting the above values in the formula
F = (1750) (15)²/(45)
F = (1750) (225)/(45)
F = 1750 x 5
F = 8750 N
If we use the equation:
N2 + 3H2 --> 2NH3
Then
1 mol of Nitrogen required 3 moles of Hydrogen
x mols : 6.34mols
X = 6.34/3
X = 2.11 moles of Nitrogen are required.