Answer:

Explanation:
What is said is that the meter fell d=18.3cm=0.183m under the action of gravity. We can use the formula for accelerated motion:

Since it departed from rest it will mean that:

So our time will be:

Which for our values is:

Answer:
0.384c
Explanation:
To find the speed of the pursuit ship relative to the cruiser you use the following relativistic equation:

u': relative speed
u: speed of the pursuit ship = 0.8c
v: speed of the cruiser = 0.6c
c: speed of light
You replace the values of the parameters to obtain u':

Hence, the relative speed is 0.384c
Answer:
The correct option is;
A. Circular
Explanation:
Some of the light that impinges on the surface are reflected and the rest are transmitted to a different medium
At the surface of the next medium also, some of the light are transmitted while the others are reflected and refracted through the first medium
The speed of light (and hence the wavelength and color) refracted through the thin film is changed as the distance the refracted light travels through the thin film is increased as we move away from the point directly in the front view to some distance as the reflected light path from those distance to the eye is increased due to their inclination giving them a different wavelength which are all equal at a radial distance from the eye hence forming a circular fringes.
The speed of the block when the compression is 15 cm is 9.85 m/s.
The given parameters;
- <em>mass of the block, m = 2.4 kg</em>
- <em>height of the block, h = 5 m</em>
- <em>compression of the spring, x = 25 cm = 0.25 m</em>
The spring constant is calculated as follows;

The speed of the block when the compression is 15 cm can be determined by applying the principle of conservation of energy;

Thus, the speed of the block when the compression is 15 cm is 9.85 m/s.
Learn more here:brainly.com/question/14289286
Explanation:
the correct answer is Option 5.√½gh.
hope this helps you.