Answer:
(B) The wavelength that a star radiates the most energy is inversely proportional to the temperature.
Explanation:
As we know that
According to Wien's law wavelength is inverse proportional to the temperature .
λ.T = Constant.
λ.∝ 1 /T
As we know that star radiates wavelength and this wavelength is inverse proportional to the temperature of the star.
The temperature of cool star is cooler than the temperature of hot star that is cool star looks red and hot star looks blue.Cool star have low energy and hot star have high energy.
So option B is correct.
(B) The wavelength that a star radiates the most energy is inversely proportional to the temperature.
Answer:
200 N = 200 Newtons
Explanation:
Just use the formula F = m*a
F = Force in Newtons
m = mass and is 20 kg
a = acceleration and is 10 m/s^2
F = 20 * 10
F = 200 Newtons.
Answer:
3.28 m
3.28 s
Explanation:
We can adopt a system of reference with an axis along the incline, the origin being at the position of the girl and the positive X axis going up slope.
Then we know that the ball is subject to a constant acceleration of 0.25*g (2.45 m/s^2) pointing down slope. Since the acceleration is constant we can use the equation for constant acceleration:
X(t) = X0 + V0 * t + 1/2 * a * t^2
X0 = 0
V0 = 4 m/s
a = -2.45 m/s^2 (because the acceleration is down slope)
Then:
X(t) = 4*t - 1.22*t^2
And the equation for speed is:
V(t) = V0 + a * t
V(t) = 4 - 2.45 * t
If we equate this to zero we can find the moment where it stops and begins rolling down, that will be the highest point:
0 = 4 - 2.45 * t
4 = 2.45 * t
t = 1.63 s
Replacing that time on the position equation:
X(1.63) = 4 * 1.63 - 1.22 * 1.63^2 = 3.28 m
To find the time it will take to return we equate the position equation to zero:
0 = 4 * t - 1.22 * t^2
Since this is a quadratic equation it will have to answers, one will be the moment the ball was released (t = 0), the other will eb the moment when it returns:
0 = t * (4 - 1.22*t)
t1 = 0
0 = 4 - 1.22*t2
1.22 * t2 = 4
t2 = 3.28 s
Answer:
The answer is D.
Explanation:
They vibrate parallel to the wave.
During the propagation of a sound wave in air, the vibrations of the particles are most accurately represented as longitudinal. Longitudinal waves are waves in which the motion of the individual particles of the medium occurs in a direction that is parallel to the direction of energy transmission.