1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex73 [517]
4 years ago
7

A 25.0 kg box of textbooks rests on a loading ramp that makes an angle α with the horizontal. The coefficient of kinetic frictio

n is 0.250, and the coefficient of static friction is 0.350. Part APart complete As α is increased, find the minimum angle at which the box starts to slip. Express your answer in degrees. αα = 19 ∘ Previous Answers Correct

Physics
1 answer:
Alekssandra [29.7K]4 years ago
8 0

Answer:

The minimum angle at which the box starts to slip (rounded to the next whole number) is α=19°

Explanation:

In order to solve this problem we must start by drawing a sketch of the problem and its corresponding fre body diagram (See picture attached).

So, when we are talking about friction, there are two types of friction coefficients. Static and kinetic. Static friction happens when the box is not moving no matter what force you apply to it. You get to a certain force that is greater than the static friction and the box starts moving, it is then when the kinetic friction comes into play (kinetic friction is generally smaller than static friction). So in order to solve this problem, we must find an angle such that the static friction is the same as the force applie by gravity on the box. For it to be easier to analyze, we must incline the axis of coordinates, just as shown on the picture attached.

After doing an analysis of the free-body diagram, we can build our set of equations by using Newton's thrid law:

\sum F_{x}=0

we can see there are only two forces in x, which are the weight on x and the static friction, so:

-W_{x}+f_{s}=0

when solving for the static friction we get:

f_{s}=W_{x}

We know the weight is found by multiplying the mass by the acceleration of gravity, so:

W=mg

and:

W_{x}=mg sin \alpha

we can substitute this on our sum of forces equation:

f_{s}=mg sin \alpha

the static friction will depend on the normal force applied by the plane on the box, static friction is found by using the following equation:

f_{s}=N\mu_{s}

so we can substitute this on our equation:

N\mu_{s}=mg sin \alpha

but we don't know what the normal force is, so we need to find it by doing a sum of forces in y.

\sum F_{y}=0

In the y direction we got two forces as well, the normal force and the force due to gravity, so we get:

N-W_{y}=0

when solving for N we get:

N=W_{y}

When seeing the free-body diagram we can determine that:

W_{y}=mg cos \alpha

so we can substitute that in the sum of y-forces equation, so we get:

N=mg cos \alpha

we can go ahead and substitute this equation in the sum of forces in x equation so we get:

mg cos \alpha \mu_{s}=mg sin \alpha

we can divide both sides of the equation into mg so we get:

cos \alpha \mu_{s}=sin \alpha

as you may see, the angle doesn't depend on the mass of the box, only on the static coefficient of friction. When solving for \mu_{s} we get:

\mu_{s}=\frac{sin \alpha}{cos \alpha}

when simplifying this we get that:

\mu_{s}=tan \alpha

now we can solve for the angle so we get:

\alpha= tan^{-1}(\mu_{s})

and we can substitute the given value so we get:

\alpha= tan^{-1}(0.350)

which yields:

α=19.29°

which rounds to:

α=19°

You might be interested in
Help with i) and ii) pls >_
alina1380 [7]

Answer:

4 it the corrcert anser

Explanation:

4 0
3 years ago
Read 2 more answers
What’s the voltage of a battery in a circuit with resistance of 3 ohms and current of 5 amps?
alexira [117]

Answer: The correct answer is-15 Volts.

Explanation-

Voltage of a battery can be defined as the difference in electric potential that lies between the positive and negative terminals of a battery.

It can be calculated using Ohm's law, which states that the electric potential difference between two points on a circuit is equal to the product of the current that flows between the two points (I) and the total resistance that sis present between the two points. It can be mathematically depicted as-

ΔV = I • R  

Putting the value of 'I' and 'R', we get-

ΔV = 5 X 3

    =  15 V

8 0
3 years ago
An atom is.......Help?
Dmitry_Shevchenko [17]
The smallest level of ordination in living things. Every living thing is made up of atoms. Atoms are made up of protons, neutrons, and electrons.
5 0
3 years ago
Discuss how the primary colors of light differ from the primary pigment colors
Bad White [126]
The shades are very different
6 0
3 years ago
Please help (will mark brainliest)
serg [7]

Answer:

if im not mistaken i think its d let me know if correct plz

7 0
3 years ago
Read 2 more answers
Other questions:
  • tas watches as his uncle changes a flat tire on a car. his uncle raises the car using a machine called a jack. each time his unc
    9·2 answers
  • You wash the dishes. when you let the water down the drain, where is the water flowing the fastest?
    11·1 answer
  • How do remote sensitive satellites help people stay safe from massive fires
    9·1 answer
  • A typical reaction time to get your foot on the brake in your car is 0.2 second. If you are traveling at a speed of 60 mph (88 f
    8·2 answers
  • A(n) ______ can act as an electronic switch that opens or closes the circuits for electrical charges.
    13·1 answer
  • A car drives over a hilltop that has a radius of curvature 0.120 km at the top of the hill. At what speed would the car be trave
    8·1 answer
  • A boy whirls a ball on a string in a horizontal circle of radius 1 m. How many revolutions per minute must the ball make if its
    10·1 answer
  • 15 POINTS PLZ HELP IM ON A TIMER! IM ON EDGE EXAM
    14·2 answers
  • Gravity affects atmospheric pressure true or false
    10·1 answer
  • What factors affect the strength and direction of electrical forces?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!