Not sure what you are asking. I have two possible answers though...
It could either be more negatively charged, or valence electrons.
The more away from the nucleus a electron is, the more negatively charged it is.
The electrons on the outermost electron shell is valence electrons.
Again, I don't know what you were asking, but one of these answers may be correct.
Answer:
a) V air/day = 8640 L air an adult breaths / day
b) 0.0181 L CO intake a person / day
Explanation:
a) one average person has 12 breaths for min:
in each breath it take an average of 500 mL on air.
⇒ 12 breath / min * 500mL air / breath = 6000 mL air / min
the average air volume per day of a person is:
⇒ Vair/day = 6000 mL air / min * (60 min / h) * ( 24 h / day ) = 8640000 mLair / day * ( L / 1000 mL)
⇒ V air / day = 8640 L / day
b) 2.1 E-6 L CO / L air * 8640 L air / day = 0.0181 L CO / day
Answer:
- In general, polar solutes are most soluble in highly polar solvents.
Explanation:
The general rule is "like dissolves like" which means that <em>polar solvents </em>dissolve polar (or ionic) <em>solutes</em> and <em>non-polar solvents</em> dissolve non-polar solutes.
In order for a solvent dissolve a solute, the strength of the interacttion (force) between the solute and the solvent units (atoms, molecules, or ions) must be stronger than the strength of the forces that keep together he particles of the pure substances (known as intermolecular forces).
Since the nature of the interactions between the units are electrostatic, the more polar is the solvent the better it will be able to attract and surround the solute particles, keeping them separated and in solution. That mechanism explains why polar solutes will be most soluble in highly polar solvents.
Let suppose the Gas is acting Ideally, Then According to Ideal Gas Equation,
P V = n R T
Solving for P,
P = n R T / V ----- (1)
Data Given;
Moles = n = 1.20 mol
Volume = V = 4 L
Temperature = T = 30 + 273 = 303 K
Gas Constant = R = 0.08206 atm.L.mol⁻¹.K⁻¹
Putting Values in Eq.1,
P = (1.20 mol × 0.08206 atm.L.mol⁻¹.K⁻¹ × 303 K) ÷ 4 L
P = 7.45 atm
Explanation:
The boiling point of liquid nitrogen, liquid argon, and liquid oxygen are -196°C, -186°C, and -183°C respectively. So, the correct order is nitrogen, argon, oxygen.