1. KI
2. AlBr₃
3. CsNO₃
4. Al₂(CO₃)₃
Explanation:
1. potassium (K⁺) iodine (I⁻) - KI
2. aluminium (Al³⁺) bromine (Br⁻) - AlBr₃
3. caesium (Cs⁺) nitrate (NO₃⁻) - CsNO₃
4. aluminum (Al³⁺) carbonate (CO₃²⁻) - Al₂(CO₃)₃
Learn more about:
formulas for the ionic compounds
brainly.com/question/13954262
#learnwithBrainly
Resonance in air columns is used in a variety of musical woodwind instruments. Something like a flute for example uses resonance to make sound. Not sure what instruments you are talking about unless you provide a list.
Answer : Option 4) Region of the most probable electron location.
Explanation : As per the electron cloud model of the atom, an orbital is a region where the probability of finding an electron is highest. According to this model which was used to identify the probable location of the electrons when they go around the nucleus of an atom.
This electron cloud model was different from the older Bohr atomic model by Niels Bohr.
Answer:
a=28600J; b=90.6 J/K; c=402 torr
Explanation:
(a) considering the data given
Vapour pressure P1 =0 at Temperature T1 = 42.43˚C,
Vapour pressure P2 = 273.15 at Temperature T2= 315.58 K)
Using the Clausius-Clapeyron Equation
ln (P2/P1) = (ΔH/R)(1/T2 - 1/T1)
In 760/140 = ΔH/8.314 J/mol/K × (1/315.58K -- 1/273.15K)
ΔH vap= +28.6 kJ/mol or 28600J
(b) using the Equation ΔG°=ΔH° - TΔS to solve forΔS.
Since ΔG at boiling point is zero,
ΔS =(ΔH°vap/Τb)
ΔS = 28600 J/315.58 K
= 90.6 J/K
(c) using ln (P2/P1) = (ΔH/R)(1/T2 - 1/T1)
ln P298 K/1 atm = 28600 J/8.314 J/mol/K × (1/298.15K - 1/315.58K)
P298 K = 0.529 atm
= 402 torr
☛ <u>299,792,458</u> meters per second.