Answer:
0.13 g
Explanation:
mass of aluminum required = ( Dislocation length) / ( Dislocation density) × (density of metal)
3000 miles to cm ( 1 mile = 160934 cm) = 3000 miles × 160934 cm / 1 mile = 482802000 cm
density of Aluminium = 2.7 g /cm³
dislocation density of aluminum = 10¹⁰ cm³
mass of aluminum required = (482802000 cm × 2.7 g/cm³) / 10¹⁰ cm³ = 0.13 g
Answer:
A scientific question is basically a question that can lead to a hypothesis to help us figure out the observation in science. I hope this helps you
Answer:
The empirical formula is, C4H4S
Explanation:
Number of moles of carbon = 1.119 g/ 44g/mol = 0.025 moles
Mass of Carbon= 0.025 moles × 12 g/ mole = 0.3 g
Number of moles of hydrogen = 0.229/18g/mol × 2 = 0.025 moles
Mass of hydrogen = 0.025 moles × 1 = 0.025 g
Number of moles of sulphur = 0.407g/ 64 g/mol = 0.0064 moles
Mass of sulphur= 0.0064 moles ×32 = 0.2 g
Now we obtain the mole ratios by dividing through by the lowest ratio.
C- 0.025 moles/ 0.0064 moles, H- 0.025 moles/ 0.0064 moles, S- 0.0064 moles/0.0064 moles
C4H4S
Answer:
rate= k[A]²[B]²[C]
Explanation:
When concentration of A is increased two times ,keeping other's concentration constant , rate of reaction becomes 4 times .
So rate is proportional to [A]²
When concentration of B is increased two times , keeping other's concentration constant,rate of reaction becomes 4 times.
So rate is proportional to [B]²
When concentration of C is increased two times , keeping other's concentration constant, rate of reaction becomes 2 times.
So rate is proportional to [C]
So rate= k[A]²[B]²[C]