If you wrap some of the wire around the nail in one direction and some of the wire in the other direction, the magnetic fields from the different sections fight each other and cancel out, reducing the strength of your magnet.
Julia walks from the park, which is six blocks east of her house, to the store, which is three blocks east of her house. Julia walks for 5 minutes. This walk's average speed will be 1.2 blocks per minute. Option B is correct.
<h3>What is displacement?</h3>
Displacement is defined as the shortest distance between the two points. Distance is the horizontal length covered by the body. While displacement is the shortest distance between the two points.
Displacement is a vector quantity .its unit is m.
The average velocity on this walk will be;

Hence option B is correct.
To learn more about displacement refer to the link; brainly.com/question/10919017
#SPJ1
-GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Given
A particle of mass m moving under the influence of a fixed mass's M, gravitational potential energy of formula -GMm/r, where r is the separation between the masses and G is the gravitational constant of the universe.
As the Gravity Potential energy of particle = -GMm/r
Total energy of particle = Kinetic energy + Potential Energy
As we know that
Kinetic energy = 1/2mv²
Also, v is equals to square root of GM/r
v = √GM/r
Put the value of v in the formula of kinetic energy
We get,
Kinetic Energy = GMm/2r
Total Energy = GMm/2r + (-GMm/r)
= GMm/2r - GMm/r
= -GMm/2r
Hence, -GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Learn more about Gravitational Potential Energy here brainly.com/question/15896499
#SPJ4
A. because everything is balanced.
Answer: A.
As a diver rises, the pressure on their body decreases which allows the volume of the gas to decrease.
Explanation:
The problem is that a diver, experiences an increased pressure of water compresses nitrogen and more of it dissolves into the body. Just as there is a natural nitrogen saturation point at the surface, there are saturation points under water. Those depend on the depth, the type of body tissue involved, and also how long a diver is exposed to the extra pressure. The deeper a diver go, the more nitrogen the body absorbs.
The problem is getting rid of the nitrogen once you ascend again. As the pressure diminishes, nitrogen starts dissolving out of the tissues of the diver's body, a process called "off-gassing." That results in tiny nitrogen bubbles that then get carried to the lungs and breathed out. However, if there is too much nitrogen and/or it is released too quickly, small bubbles can combine to form larger bubbles, and those can do damage to the body, anything from minor discomforts all the way to major problems and even death.