1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesnalui [34]
2 years ago
5

Assuming that no equilibria other than dissolution are involved, calculate the concentration of all solute species in each of th

e following solutions of salts in contact with a solution containing a common ion. Show that changes in the initial concentrations of the common ions can be neglected. (a) AgCl(s) in 0.025 M NaCl (b) CaF2(s) in 0.00133 M KF (c) Ag2SO4(s) in 0.500 L of a solution containing 19.50 g of K2SO4 (d) Zn(OH)2(s) in a solution buffered at a pH of 11.45\
Chemistry
1 answer:
kirill [66]2 years ago
8 0

Answer:

Explanation:

<u>a) AgCl(s) in 0.025 M NaCl</u>

Equation:  AgCl(s) ⇄ Ag⁺ (aq) + Cl⁻ (aq)

Initial conc :    S            O               O

equili conc :    O            S                S

                  NaCl(s) ⇒ Na⁺ (aq) + Cl⁻ (aq)

Initial conc :  0.025      0           0

equili conc :     0          0.025    0.025

Therefore the concentration:  Ag⁺ = 6.4 * 10^-9 M,  Cl⁻  = 0.025 M

attached below is the detailed solution of the

You might be interested in
Consider the titration of a 20.0-mL sample of 0.105 M HC2H3O2 with 0.125 M NaOH. Determine each quantity. a. the initial pH b. t
Oksi-84 [34.3K]

Answer:

Explanation:

Given that:

Concentration of HC_2H_3O_2 \  (M_1) = 0.105 M

Volume of  HC_2H_3O_2 \  (V_1) = 20.0 mL

Concentration of NaOH (M_2) = 0.125 M

The  chemical reaction can be expressed as:

HC_2H_3O_2_{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O_{(l)}

Using the ICE Table to determine the equilibrium concentrations.

          HC_2 H_3 O_2 _{(aq)} + H_2O _{(l) } \to C_2 H_3O_2^- _{(aq)} + H_3O^+_{ (aq)}

I            0.105                                     0                  0

C              -x                                         +x                +x

E            0.105 - x                                  x                  x

K_a = \dfrac{[C_2H_5O^-_2][H_3O^+]}{[HC_2H_3O_2]}

K_a = \dfrac{(x)(x)}{(0.105-x)}

Recall that the ka for HC_2H_3O_2= 1.8 \times 10^{-5}

Then;

1.8 \times 10^{-5} = \dfrac{(x)(x)}{(0.105 -x)}

1.8 \times 10^{-5} = \dfrac{x^2}{(0.105 -x)}

By solving the above mathematical expression;

x = 0.00137 M

H_3O^+ = x = 0.00137  \ M \\ \\  pH = - log [H_3O^+]  \\ \\  pH = - log ( 0.00137 )

pH = 2.86

Hence, the initial pH = 2.86

b)  To determine the volume of the added base needed to reach the equivalence point by using the formula:

M_1 V_1 = M_2 V_2

V_2= \dfrac{M_1V_1}{M_2}

V_2= \dfrac{0.105 \ M \times 20.0 \ mL }{0.125 \ M}

V_2 = 16.8 mL

Thus, the volume of the added base needed to reach the equivalence point = 16.8 mL

c) when pH of 5.0 mL of the base is added.

The Initial moles of HC_2H_3O_2 = molarity × volume

= 0.105  \ M \times 20.0 \times 10^{-3} \ L

= 2.1 \times 10^{-3}

number of moles of 5.0 NaOH = molarity × volume

number of moles of 5.0 NaOH = 0.625 \times 10^{-3}

After reacting with 5.0 mL NaOH, the number of moles is as follows:

                    HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Initial moles   2.1*10^{-3}       0.625 * 10^{-3}           0                      0

F(moles) (2.1*10^{-3} - 0.625 \times 10^{-3})    0      0.625 \times 10^{-3}         0.625 \times 10^{-3}

The pH of the solution is then calculated as follows:

pH = pKa + log \dfrac{[base]} {[acid]}

Recall that:

pKa for HC_2H_3O_2=4.74

Then; we replace the concentration with the number of moles since the volume of acid and base are equal

∴

pH = 4.74 + log \dfrac{0.625 \times 10^{-3}}{1.475 \times 10^{-3}}

pH = 4.37

Thus, the pH of the solution after the addition of 5.0 mL of NaOH = 4.37

d)

We need to understand that the pH at 1/2 of the equivalence point is equal to the concentration of the base and the acid.

Therefore;

pH = pKa = 4.74

e) pH at the equivalence point.

Here, the pH of the solution is the result of the reaction in the (C_2H_3O^-_2) with H_2O

The total volume(V) of the solution = V(acid) + V(of the base added to reach equivalence point)

The total volume(V) of the solution = 20.0 mL + 16.8 mL

The total volume(V) of the solution = 36.8 mL

Concentration of (C_2H_3O^-_2) = moles/volume

= \dfrac{2.1 \times 10^{-3} \ moles}{0.0368 \ L}

= 0.0571 M

Now, using the ICE table to determine the concentration of H_3O^+;

             C_2H_5O^-_2 _{(aq)} + H_2O_{(l)} \to HC_2H_3O_2_{(aq)} + OH^-_{(aq)}

I              0.0571                                0                      0

C              -x                                       +x                     +x

E             0.0571 - x                             x                       x

Recall that the Ka for HC_2H_3O_2 = 1.8 \times 10^{-5}

K_b = \dfrac{K_w}{K_a} = \dfrac{1.0\times 10^{-14}}{1.8 \times 10^{-5} }  \\ \\ K_b = 5.6 \times 10^{-10}

k_b = \dfrac{[ HC_2H_3O_2] [OH^-]}{[C_2H_3O^-_2]}

5.6 \times 10^{-10} = \dfrac{x *x }{0.0571 -x}

x = [OH^-] = 5.6 \times 10^{-6} \ M

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{5.6 \times 10^{-6} }

[H_3O^+] =1.77 \times 10^{-9}

pH =-log  [H_3O^+]   \\ \\  pH =-log (1.77 \times 10^{-9}) \\ \\ \mathbf{pH = 8.75 }

Hence, the pH of the solution at equivalence point = 8.75

f) The pH after 5.09 mL base is added beyond (E) point.

             HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Before                             0.0021              0.002725         0

After                                   0                     0.000625        0.0021

[OH^-] = \dfrac{0.000625 \ moles}{(0.02 + 0.0218 )  \ L}

[OH^-] = \dfrac{0.000625 \ moles}{0.0418 \ L}

[OH^-] =  0.0149 \ M

From above; we can determine the concentration of H_3O^+ by using the following method:

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{0.0149}

[H_3O^+] = 6.7 \times 10^{-13}

pH = - log [H_3O^+]

pH = -log (6.7 \times 10^{-13} )

pH = 12.17

Finally, the pH of the solution after adding 5.0 mL of NaOH beyond (E) point = 12.17

3 0
3 years ago
Which of the following is the correct name for Cr203?
algol13
It’s B. Chromium(III) oxide
4 0
3 years ago
Read 2 more answers
How do you figure out the final temperature or the initial temperature in calorimetry.
Zolol [24]
Add the change in temperature to your substance's original temperature to find its final heat. For example, if your water was initially at 24 degrees Celsius, its final temperature would be: 24 + 6, or 30 degrees Celsius.
4 0
2 years ago
What are some physical properties of a candle
Troyanec [42]
The wick and the wax

Sorry if that was useless, I'm not sure how generalized you were being

6 0
2 years ago
Read 2 more answers
Washing soda, a compound used to prepare hard water for washing laundry, is a hydrate, which means that a certain number of wate
nadya68 [22]

Answer:

moles H₂O = 10

Explanation:

The mass of Na₂CO₃⋅xH₂O is 3.837 g and the mass of Na₂CO₃ is 1.42g

Therefore the mass of xH₂O is 3.837 - 1.42 = 2.417 g

The molar mass of Na₂CO₃ is 106 g/mol and for H₂O is 18 g/mol

The moles of Na₂CO₃ and H₂O in the sample are:

Na₂CO₃ = 1.42 / 106 = 0.01340 moles

H₂O = 2.417 / 18 = 0.1343

Now using rule of three :

1 mole of Na₂CO₃ has x moles of H₂O

0.01340 moles of Na₂CO₃ has 0.1343 moles of H₂O

x = 1 * 0.1343 / 0.01340 = 10

4 0
3 years ago
Other questions:
  • How many moles of atoms are in 2.00 g of 13c?
    12·2 answers
  • Determine the total pressure of a gas mixture that contains O2, N2 and He, if the partial pressure of the gases are : P(O2) = 20
    5·1 answer
  • What does DNA and cell membrane have in common?
    14·2 answers
  • For the following reaction, identify the element that was oxidized, the element that was reduced, and the reducing agent. Give a
    12·1 answer
  • Which layer of earth has the greatest pressure?
    13·1 answer
  • Question given above
    7·1 answer
  • Write a balanced chemical equation to show the complete combustion of heptane , a component of gasoline
    9·1 answer
  • Question attached pls help
    12·1 answer
  • An organic compound that contains only carbon and hydrogen and a triple bond (all the other bonds are single bonds) is classifie
    12·1 answer
  • Which atom is abundant in the universe​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!