Answer:
30.62 L
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 55 L
Initial pressure (P₁) = 3.2 atm
Initial temperature (T₁) = 520 K
Final temperature (T₂) = 760 K
Final pressure (P₂) = 8.4 atm
Final volume (V₂) =?
The final volume of the gas can be obtained as follow:
P₁V₁ / T₁ = P₂V₂ / T₂
3.2 × 55 / 520 = 8.4 × V₂ / 760
176 / 520 = 8.4 × V₂ / 760
Cross multiply
520 × 8.4 × V₂ = 176 × 760
4368 × V₂ = 133760
Divide both side by 4368
V₂ = 133760 / 4368
V₂ = 30.62 L
Therefore, the new volume of the gas is 30.62 L
Answer:
82.4 s
Explanation:
Find the NUMBEr of half lives...then multiply by 54.3
2.27 = 6.5 (1/2)^n
log (2.27/6.5) / log (1/2) = n = 1.52 half lives
1.52 * 54.3 = 82.4 s
Answer:

Explanation:
Hello,
In this case, due to the volume displacement caused the by the object's submersion, it's volume is:

In such a way, considering the mathematical definition of density, it turns out:

Rounding to the nearest tenth we finally obtain:

Regards.
Answer: fourth option, 10.8 kJ
Explanation:
The <em>heat of fusion</em>, also named latent heat of fusion, is the amount of heat energy required to change the state of a substance from solid to liquid (at constant pressure).
The data of the <em>heat of fusions</em> of the substances are reported in tables and they can be shown either per mole or per gram of substance.
In this case we have that the<em> heat of fusion for water </em>is reported per mole: <em>6.02 kJ/mole</em>.
The formula to calculate <em>how many kJ of heat (total heat) are needed to completely melt 32.3 g of water, given that the water is at its melting point</em> is:
- Heat = number of moles × heat of fusion
The calculations are:
- number of moles = mass / molar mass
number of moles = 32.3 g / 18.015 g/mol = 1.79 mol
- Heat = 1.79 mol × 6.02 kJ / mol = 10.8 kJ ← answer