The work done is by the centripetal force on mass m during an angular displacement of 2π revolutions mv²2π /r J
Centripetal force - a force acts on an moving object in circular path.
the centripetal force is given by
F= mv²/r (equation1)
Work done is given by
W = Fd (equation 2)
d = 2π
work is done by the centripetal force on mass m during an angular displacement of 2π revolutions is given by:
to calculate work done using equation 1 in 2 we get
W = mv² d/r
W = mv² × 2π /r J
The work done is by the centripetal force on mass m during an angular displacement of 2π revolutions mv²2π /r J
To know more about centripetal force :
brainly.com/question/13031430
#SPJ4
Answer:
Explanation:
Parameters given:
Mass of Puck 1, m = 1 kg
Mass of Puck 2, M = 1 kg
Initial velocity of Puck 1, u = 20 m/s
Initial velocity of Puck 2, U = 0 m/s
Final velocity of Puck 1, v = 5 m/s
Since we are told that momentum is conserved, we apply the principle of conservation of momentum:
Total initial momentum of the system = Total final momentum of the system
mu + MU = mv + MV
(1 * 20) + (1 * 0) = (1 * 5) + (1 * V)
20 = 5 + V
V = 20 - 5 = 15 m/s
Puck 2 moves with a velocity of 15 m/s
Work = (force) x (distance)
1,008 J = (force) x (28 m)
Divide each side by 28m : (1,008 kg-m²/sec²) / (28 m) = force
Force = 36 kg-m/s² = 36 Newtons .
(about 8.1 pounds)
It doesn't matter what that force accomplishes.
It could be moving a brick, lifting a fish, or pushing a little red wagon.
In order to do 1,008 joules of work in 28 meters, it takes 36 N of force,
in the direction of the 28 meters.