1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gemiola [76]
3 years ago
12

Which shows a vector quantity in the given situation. The airplane was flying 500 miles per hour to west from New York to Califo

rnia
a. 500 miles/hr West
b. 500 miles only
c. 500 miles from New York
d. 500 miles /hr
Physics
2 answers:
jenyasd209 [6]3 years ago
4 0

500 miles/hr West

Because it has magnitude and direction

Nezavi [6.7K]3 years ago
3 0
A. 500 miles/hr West
You might be interested in
A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is pv1.3 = constant.
Galina-37 [17]

Answer:

Change in specific internal Energy=250\ \rm Btu/lb

Explanation:

Given:

  • Mass of the gas, m=0.4 lb
  • Initial pressure and volume are p_1=160\ \rm lbf/in^2\ and\ v_1=1\ \rm ft^3\\
  • Final pressure and temperature are p_1=480\ \rm lbf/in^2
  • Heat transfer from the gas is 2.1 Btu

Since the process is isotropic we have

p_1v_1^{1.3}=p_2v_2^{1.3}\\160\times 1^{1.3}=480\times v_2^{1.3}\\v_2=0.43\ \rm ft^3\\

So the final volume of the gas is calculated.

Work in any isotropic is given by w

w=\dfrac{p_1v_1-P_2v_2}{n-1}\\\\w=\dfrac{160\times1-480\times0.43}{1.3-1}\\w=-154.67\ \rm Btu\\

According to the first law of thermodynamics we have

Q=\Delta U+w\\-2.1=\Delta U-154.67\\\Delta U=152.56\ \rm Btu\\

So the Specific Internal Change is given by

\Delta u=\dfrac{\Delta U}{m}\\\Delta u=\dfrac{152.56}{0.4}\\\Delta u=250\ \rm Btu/lb

So the specific Change in Internal energy is calculated.

6 0
3 years ago
Consider the following cyclic process carried out in two steps on a gas. Step 1: 44 J of heat is added to the gas, and 20. J of
notka56 [123]

Answer:37 J

Explanation:

Given

Step :1

Heat added Q=44 J

Work done=-20 J

\Delta E_1=Q+W=44-20=24 J

Step :2

Heat added Q=-61 J

work done W_2

\Delta E_2=Q+W_2

\Delta E_2=61+W_2

\Delta E_1+\Delta E_2=0

as the process is cyclic

44-20-61+W_2=0

W_2=37 J

work done in compression is 37 J

3 0
3 years ago
You have been assigned to investigate a traffic accident. The masses of car A and car B are 1300 kg and 1200 kg, respectively. C
jarptica [38.1K]

Answer:

The velocity of A before impact = 17.90 m/s

Explanation:

Coefficient of restitution = (speed of seperation)/(speed of approach)

= (v₁ - v₂)/(u₂ - u₁)

where v₁ = velocity of the car A after the impact = ?

v₂ = velocity of the car B after the impact = ?

u₂ = velocity of the car B before the impact = 0 m/s (it was initially at rest)

u₁ = velocity of car A before the impact = ?

First of, we can solve for v₂, the velocity of car B after the impact, from some of the information given in the question.

- Skid marks indicate car B slid 10 m after the impact

- The coefficient of kinetic friction the tires and road is 0.8.

According to the work energy theorem, the work done by frictional force in stopping the car B is equal to the change in kinetic energy of the car B. (All after collision)

W = ΔK.E

ΔK.E = (1/2)(1200)(v₂²) - 0 (final kinetic energy is 0 since the car comes to stop eventually)

ΔK.E = (600v₂²) J

W = F × d

where F = frictional force = μmg = 0.8×1300×9.8 = 10,192 N

d = distance the car skids over before stopping = 10 m

W = 10,192 × 10 = 101,920 J

W = ΔK.E

101,920 = 600v₂²

v₂² = (101920/600) = 169.867

v₂ = 13.03 m/s

But recall,

Coefficient of restitution = (v₁ - v₂)/(u₂ - u₁)

For the sake of convention, we take the direction of car A's initial velocity to be the positive direction.

u₁ = ?

u₂ = 0 m/s

v₁ = ?

v₂ = +13.03 m/s

Coefficient of restitution = 0.4

0.4 = (v₁ - 13.03)/(0 - u₁)

-0.4u₁ = v₁ - 13.03

v₁ = 13.03 - 0.4u₁

But this is a collision. In a collision, the linear momentum is usually conserved.

Momentum before collision = Momentum after collision

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

1300u₁ + (1200×0) = 1300v₁ + (1200×13.03)

1300u₁ + 0 = 1300v₁ + 15639.95

1300u₁ = 1300v₁ + 15639.95

But recall, from the coefficient of restitution relation,

v₁ = 13.03 - 0.4u₁

Substituting this into the momentum balance equation.

1300u₁ = 1300v₁ + 15639.95

1300u₁ = 1300(13.03 - 0.4u₁) + 15639.95

1300u₁ = 16943.28 - 520u₁ + 15639.95

1820u₁ = 32,583.23

u₁ = (32,583.23/1820)

u₁ = 17.90 m/s

Therefore, the velocity of A before impact = 17.90 m/s

Hope this Helps!!!

4 0
3 years ago
A ball starts at rest and rolls down an inclined plane. The ball reaches 7.5 m/s in 3 seconds. What is the acceleration?
just olya [345]

Answer:

a=2.5\ m/s^2

Explanation:

<u>Motion With Constant Acceleration </u>

It's a type of motion in which the velocity of an object changes uniformly over time.

The equation that describes the change of velocities is:

v_f=v_o+at

Where:

a   = acceleration

vo = initial speed

vf  = final speed

t    = time

Solving the equation for a:

\displaystyle a=\frac{v_f-v_o}{t}

The ball starts at rest (vo=0) and rolls down an inclined plane that makes it reach a speed of vf=7.5 m/s in t=3 seconds.

The acceleration is:

\displaystyle a=\frac{7.5-0}{3}

\boxed{a=2.5\ m/s^2}

7 0
2 years ago
A CD has to rotate under the readout-laser with a constant linear velocity of 1.25 m/s. If the laser is at a position 3.7 cm fro
Savatey [412]

Answer:N=322.53 rpm

Explanation:

Given

Linear velocity (v)=1.25 m/s

Position from center is 3.7 cm

we know

v=\omega \times r

1.25\times 100=\omega \times 3.7

\omega =\frac{125}{3.7}=33.78

and \frac{2\pi N}{60}=\omega

N=\frac{\omega \times 60}{2\pi }

N=\frac{33.78\times 60}{2\pi }

N=322.53 rpm

8 0
3 years ago
Other questions:
  • What is the gravitational potential energy of a rock with the mass of 67 kg if it is sitting on top of a hill .35 kilometers hig
    15·1 answer
  • anthony is learning about electric circuits. he has started building a circuit shown below. which of the following items should
    9·1 answer
  • Helium has a density of 1.79 x 10-4 g/mL at standard temperature and pressure. A balloon has a volume of 6.3 liters. Calculate t
    9·2 answers
  • A car drives at a constant velocity of 100 mi/h what is the cars acceleration
    15·1 answer
  • The weights of soy patties sold by a diner are normally distributed. A random sample of 15 patties yields a mean weight of 3.8 o
    11·1 answer
  • Consider two positively charged particles, one of charge q₀ (particle 0) fixed at the origin, and another of charge q₁ (particle
    8·1 answer
  • What is the resistance of al lamp that allows a current of 10 amps with 120 volts
    6·1 answer
  • (show your work)
    10·1 answer
  • The two uniform, slender rods B1and B2, each of mass 2kg, are pinned together at P, and then B1is suspended from a pin at O. (Th
    5·1 answer
  • A series circuit has four resistors. The current through one resistor is 810 mA. How much current is supplied by the source?0.81
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!