r₁ = distance of point A from charge q₁ = 0.13 m
r₂ = distance of point A from charge q₂ = 0.24 m
r₃ = distance of point A from charge q₃ = 0.13 m
Electric field by charge q₁ at A is given as
E₁ = k q₁ /r₁² = (9 x 10⁹) (2.30 x 10⁻¹²)/(0.13)² = 1.225 N/C towards right
Electric field by charge q₂ at A is given as
E₂ = k q₂ /r₂² = (9 x 10⁹) (4.50 x 10⁻¹²)/(0.24)² = 0.703 N/C towards left
Since the electric field in left direction is smaller, hence the electric field by the third charge must be in left direction
Electric field at A will be zero when
E₁ = E₂ + E₃
1.225 = 0.703 + E₃
E₃ = 0.522 N/C
Electric field by charge "q₃" is given as
E₃ = k q₃ /r₃²
0.522 = (9 x 10⁹) q₃/(0.13)²
q₃ = 0.980 x 10⁻¹² C = 0.980 pC
Answer:
(i) false
(ii) true
(iii) true
(iv) false
Explanation:
(i) The ratio of Cp and Cv is not constant for all the gases. It is because the value of cp and Cv is different for monoatomic, diatomic and polyatomic gases.
So, this is false.
(ii) For monoatomic gas
Cp = 5R/2, Cv = 3R/2
So, thier ratio
Cp / Cv = 5 / 3 = 1.67
This statement is true.
(iii) for diatomic gases
Cp = 7R/2, Cv = 5R/2
Cp / Cv = 7 / 5 = 1.4
This statement is true.
(iv) It is false.
One scientist proposes an idea and other scientists repeat his or her experiments so they can Accept the Idea.
Answer:
h = 11.47 m
Explanation:
Initial speed pf the t-shirt gun is 15 m/s
We need to find the maximum distance covered by the t-shirt. It is based on the conservation of energy. The maximum distance covered is given by :

So, it will cover a distance of 11.47 m.
An object that has kinetic energy must be <em>moving</em>.
The formula for an object's kinetic energy is
KE = (1/2) · (the object's mass) · <u><em>(the object's speed)²</em></u>
As you can see from the formula, if the object has no speed, then its kinetic energy is zero. That's why kinetic energy is usually called the "energy of motion", and if an object HAS kinetic energy, then that tells you right away that it must be moving.