Answer:
The magnetic field strength and the electrons' energy are 0.077 T and 0.8906 eV.
Explanation:
Given that,
Diameter = 2.62 mm
Frequency = 2.15 GHz
(A). We need to calculate the magnetic field strength
Using formula of the magnetic field strength

Where, f = frequency
e = charge of electron
Put the value into the formula


(B). We need to calculate the energy of electron
Using formula of energy



The energy in eV



Hence, The magnetic field strength and the electrons' energy are 0.077 T and 0.8906 eV.
"<span>During radioactive decay, atoms break down, releasing, particles or energy" is the one statement about radioactive decay among the following choices given in the question that is true. The correct option is option "b".
"H</span>alf-life" is the term among the following that <span>refers to the time it takes for one-half of the radioactive atoms in a sample of a radioactive element to decay. The correct option is option "d".</span>
Answer:
7.5 cm
Explanation:
In the figure we can see a sketch of the problem. We know that at the bottom of the U-shaped tube the pressure is equal in both branches. Defining
Ethyl alcohol density and
Glycerin density , we can write:

Simplifying:

On the other hand:

Rearranging:

Replacing (2) in (1):

Rearranging:

Data:



The medical understanding of death is related to the scientific approach, and the popular understanding is related to the inclusive spiritual and cultural approaches.
<h3 /><h3>What is death for science?</h3>
Death occurs when an individual's cardiorespiratory and brain functions cease due to some factor, thus ending his life.
Popular understanding, on the other hand, is aligned with scientific knowledge, but it is also encompassing cultural and religious teachings, which define topics not proven by science, such as life after death for example.
Therefore, death is a delicate topic for society, and spirituality is the basis found for greater emotional comfort in individuals who suffer significant losses of loved ones.
Find out more about scientific knowledge here:
brainly.com/question/1729104
#SPJ1
Answer:
0.546 
Explanation:
From the given information:
The force on a given current-carrying conductor is:

where the length usually in negative (x) direction can be computed as

Now, taking the integral of the force between x = 1.0 m and x = 3.0 m to get the value of the force, we have:



![F = I (9.0) \bigg [\dfrac{x^3}{3} \bigg ] ^3_1 \hat k](https://tex.z-dn.net/?f=F%20%3D%20I%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7Bx%5E3%7D%7B3%7D%20%5Cbigg%20%5D%20%5E3_1%20%5Chat%20k)
![F = I (9.0) \bigg [\dfrac{3^3}{3} - \dfrac{1^3}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20I%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B3%5E3%7D%7B3%7D%20-%20%5Cdfrac%7B1%5E3%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
where;
current I = 7.0 A
![F = (7.0 \ A) (9.0) \bigg [\dfrac{27}{3} - \dfrac{1}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20%287.0%20%5C%20A%29%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B27%7D%7B3%7D%20-%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
![F = (7.0 \ A) (9.0) \bigg [\dfrac{26}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20%287.0%20%5C%20A%29%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B26%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
F = 546 × 10⁻³ T/mT 
F = 0.546 