The object that a satellite revolves around is the <em>central body</em> of the system. <em>(C)</em>
For example:
-- The central body of the solar system is the Sun.
-- The central body for TV satellites, GPS satellites, weather satellites, and the International Space Station is the Earth.
-- The central body for Phobos and Deimos is Mars.
This should be a pretty easy question to answer by elimination, when you notice that "Orbit", "Period", and "Rotation" are not "Bodies".
HBr is the most powerful and dangerous acid .
Explanation:
A strong acid is one that instantly disunites or grants its protons in suspension. HBr is a strong acid. HBr is powerful than HCl or HF because the overlapping of a 1s-orbital and a 4p-orbital is surprisingly small, thus the binding is weak so splitting is very easy..
Answer:
The work done against gravity is 78.4 J
Explanation:
The work is calculated by multiplying the force by the distance that the
object moves
W = F × d, where W is the work , F is the force and d is the distance
The SI unit of work is the joule (J)
We need to find the work done against gravity when lowering a
16 kg box 0.50 m
→ F = mg
→ m = 16 kg, and g = 9.8 m/s²
Substitute these value in the rule
→ F = 16 × 9.8 = 156.8 N
→ W = F × d
→ F = 156.8 N and d = 0.50
Substitute these values in the rule
→ W = 78.4 J
<em>The work done against gravity is 78.4 J</em>
Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:
KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J
Part B:
Now you can use Hooke’s law to find the force:
F = kx
F = (5000)(0.2)
F = 1000 N