Answer:
U2 = KAε0V2 / (2d)
Explanation:
The dielectric constant K just replaces the "3″ from Part B.
Answer:
your mom and mark me brainlyist if I was right
Answer:
The temperature is 
Explanation:
From the question ewe are told that
The rate of heat transferred is 
The surface area is 
The emissivity of its surface is 
Generally, the rate of heat transfer is mathematically represented as

=> ![T = \sqrt[4]{\frac{P}{e* \sigma } }](https://tex.z-dn.net/?f=T%20%20%3D%20%20%5Csqrt%5B4%5D%7B%5Cfrac%7BP%7D%7Be%2A%20%5Csigma%20%7D%20%7D)
where
is the Boltzmann constant with value 
substituting value
![T = \sqrt[4]{\frac{13.1}{ 0.287* 5.67 *10^{-8} } }](https://tex.z-dn.net/?f=T%20%20%3D%20%20%5Csqrt%5B4%5D%7B%5Cfrac%7B13.1%7D%7B%200.287%2A%205.67%20%2A10%5E%7B-8%7D%20%7D%20%7D)

Answer:
0.075 T
Explanation:
When a current-carrying wire is immersed in a region with magnetic field, the wire experiences a force, given by

where
I is the current in the wire
L is the length of the wire
B is the strength of the magnetic field
is the angle between the direction of I and B
In this problem we have:
L = 0.65 m is the length of the wire
I = 8.2 A is the current in the wire
F = 0.40 N is the force experienced by the wire
since the current is at right angle with the magnetic field
Solving the formula for B, we find the strength of the magnetic field:
