Answer:
46.40 g.
Explanation:
- It is a stichiometric problem.
- The balanced equation of the reaction: 4K + O₂ → 2K₂O.
- It is clear that 4.0 moles of K reacts with 1.0 mole of oxygen produces 2.0 moles of K₂O.
- We should convert the mass of K (38.5 g) into moles using the relation:
<em>n = mass / molar mass,</em>
n = (38.5 g) / (39.098 g/mol) = 0.985 mole.
<em>Using cross multiplication:</em>
4.0 moles of K produces → 2.0 moles of K₂O, from the stichiometry.
0.985 mole of K produces → ??? moles of K₂O.
∴ The number of moles of K₂O produced = (0.985 mole) (2.0 mole) / (4.0 mole) = 0.4925 mole ≅ 0.5 mole.
- Now, we can get the mass of K₂O:
∴ mass = n x molar mass = (0.5 mole) (94.2 g/mol) = 46.40 g.
Answer:
living organisms whose genetic material has been artificially manipulated in a laboratory through genetic engineering
Explanation:
Answer:
1. When you first opened the bottle of coke the pressure of gas in the coke (increased) and the dissolved gas(leaves) the coke. 2. When you placed the coke in hot water , the pressure of gas in the coke (increased) and the dissolved gas(leaves) the coke 3. Therefore to increase the solubility of a gas in a liquid ( that is to make a gas more soluble in a liquid.
Explanation:
Hope it helps.
Answer to this is Radioactive isotopes.
Isotopes are the species of the same element having different atomic masses that means the number of protons remains the same but number of neutrons do differ. For example
and
are the two isotopes of Hydrogen (
).
Radioactive isotopes are the isotopes which release some kind of energy in the form of alpha particles, beta particles or gamma radiation. Examples of each of the decay processes are :
Alpha Decay: In this decay one alpha particle having atomic mass 4 and atomic number 2 or we can say a He molecule will come out. 
Beta Decay: In this decay a
particle is emitted increasing the atomic number of the reactant by 1 unit.

Gamma Radiation: In this type of reaction only radiation is emitted out which does not change the original molecule.

Answer:
For Mass N, Mass H, and Mass O, the mass is 28.0 g N, 4.0 g H, and 48.0 g respectively
Explanation:
The computation of the mass of each element is given below:
As we know that
A1 mole of ammonium nitrate i.e. 2 mol N, 4 mol H, 3 mol
Now we multiply each of above by the molar masses
For N
= 14.0 g/mol × 2
= 28.0 gN
For H
= 1.0 g/mol × 4
= 4.0 gN
ANd, for O
= 16.0 g/mol × 3
= 48.0 gN
Hence, For Mass N, Mass H, and Mass O, the mass is 28.0 g N, 4.0 g H, and 48.0 g respectively