Answer:
D) the second at the doorknob
Explanation:
The torque exerted by a force is given by:

where
F is the magnitude of the force
d is the distance between the point of application of the force and the centre of rotation
is the angle between the direction of the force and d
In this problem, we have:
- Two forces of equal magnitude F
- Both forces are perpendicular to the door, so 
- The first force is exerted at the midpoint of the door, while the 2nd force is applied at the doorknob. This means that d is the larger for the 2nd force
--> therefore, the 2nd force exerts a greater torque
I think all of those are examples
A gravitational field is the field generated by a massive body, that extends into the entire space. Every object with mass m experiences a force F when immersed in a gravitational field. The intensity of the force is equal to

where

is the gravitational constant, M is the mass of the source of the field (e.g. the mass of a planet), and r is the distance between the object and the source of the field. The force is always attractive.
A possible way to measure the intensity of a gravitational field is by measuring the acceleration a of the object immersed in this field. In fact, for Newton's second law we have:

but since

we can write

Therefore, by measuring the acceleration of the object, we also measure the intensity of the field.