solution:
We know v0 = 0, a = 9.8, t = 4.0. We need to solve for v
so,
we use the equation:
v = v0 + at
v = 0 + 9.8*4.0
v = 39.2 m/s
Now we just need to solve for d, so we use the equation:
d = v0t + 1/2*a*t^2
d = 0*4.0 + 1/2*9.8*4.0^2
d = 78.4 m
Answer:
E = 3.54 x 10⁻¹⁹ J
Explanation:
The energy of the photon can be given in terms of its wavelength by the use of the following formula:

where,
E = energy = ?
h = Plank's Constant = 6.626 x 10⁻³⁴ Js
c = speed of light = 2.998 x 10⁸ m/s
λ = wavelength of light = 560.6 nm = 5.606 x 10⁻⁷ m
Therefore,

<u>E = 3.54 x 10⁻¹⁹ J</u>
Answer:
Static stretching is the answer.
Explanation:
Static stretching is the most common form that greatly improves flexibility. However, static stretches does little to contract the muscles needed to generate powerful golf swings. Dynamic stretches help improve your range of motion while reducing muscle stiffness.
Answer:
0.231 m/s
Explanation:
m = mass attached to the spring = 0.405 kg
k = spring constant of spring = 26.3 N/m
x₀ = initial position = 3.31 cm = 0.0331 m
x = final position = (0.5) x₀ = (0.5) (0.0331) = 0.01655 m
v₀ = initial speed = 0 m/s
v = final speed = ?
Using conservation of energy
Initial kinetic energy + initial spring energy = Final kinetic energy + final spring energy
(0.5) m v₀² + (0.5) k x₀² = (0.5) m v² + (0.5) k x²
m v₀² + k x₀² = m v² + k x²
(0.405) (0)² + (26.3) (0.0331)² = (0.405) v² + (26.3) (0.01655)²
v = 0.231 m/s