I believe the correct answer from the choices listed above is the first option. <span>A blimp flying around over the Super Bowl has both kinetic and potential energy. It initially posses potential energy then as it moves te said energy is converted to kinetic energy. Hope this answers the question.
</span>
Answer:
a) t = 3.35[s]; b) t = 1.386[s]
Explanation:
We can solve this problem by dividing it into two parts, for the first 55 [m] and then the second part with the remaining 55 [m].
We will take the initial velocity as zero, as the problem does not mention that the Rock was thrown at initial velocity.
And using kinematics equations:
![v_{f}^{2}= v_{o}^{2}+2*g*y\\where:\\v_{o}=0\\g=gravity = 9.81[m/s^2]\\y=55 [m]\\v_{f}^{2}=0+2*9.81*55\\v_{f}=\sqrt{2*9.81*55} \\v_{f}=32.85[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%5E%7B2%7D%3D%20v_%7Bo%7D%5E%7B2%7D%2B2%2Ag%2Ay%5C%5Cwhere%3A%5C%5Cv_%7Bo%7D%3D0%5C%5Cg%3Dgravity%20%3D%209.81%5Bm%2Fs%5E2%5D%5C%5Cy%3D55%20%5Bm%5D%5C%5Cv_%7Bf%7D%5E%7B2%7D%3D0%2B2%2A9.81%2A55%5C%5Cv_%7Bf%7D%3D%5Csqrt%7B2%2A9.81%2A55%7D%20%5C%5Cv_%7Bf%7D%3D32.85%5Bm%2Fs%5D)
Now we can calculate the time:
![v_{f}=v_{o}+g*t\\t=\frac{v_{f}-v_{o}}{g}\\ t=\frac{32.85-0}{9.81}\\ t=3.35[s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7Bo%7D%2Bg%2At%5C%5Ct%3D%5Cfrac%7Bv_%7Bf%7D-v_%7Bo%7D%7D%7Bg%7D%5C%5C%20t%3D%5Cfrac%7B32.85-0%7D%7B9.81%7D%5C%5C%20t%3D3.35%5Bs%5D)
Now we can calculate the second time, but using as a initial velocity 32.85[m/s].
The final velocity will be:
![v_{f}^{2}= v_{o}^{2}+2*g*y\\v_{f}=\sqrt{v_{o}^{2}+2*g*y} \\v_{f}=\sqrt{32.85^{2}+2*9.81*55 } \\v_{f}=46.45[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%5E%7B2%7D%3D%20v_%7Bo%7D%5E%7B2%7D%2B2%2Ag%2Ay%5C%5Cv_%7Bf%7D%3D%5Csqrt%7Bv_%7Bo%7D%5E%7B2%7D%2B2%2Ag%2Ay%7D%20%5C%5Cv_%7Bf%7D%3D%5Csqrt%7B32.85%5E%7B2%7D%2B2%2A9.81%2A55%20%7D%20%5C%5Cv_%7Bf%7D%3D46.45%5Bm%2Fs%5D)
Now we can calculate the second time:
![t=\frac{46.45-32.85}{9.81} \\t= 1.386[s]](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B46.45-32.85%7D%7B9.81%7D%20%5C%5Ct%3D%201.386%5Bs%5D)
Note: The reason the second time is shorter even though it is the same distance is that the acceleration of gravity increases the speed of the rock more and more as it falls.
What will most likely happen if a sound wave moves from the air through a solid? It will increase in wavelength. It will decrease in speed. ... It will decrease in wavelength.
Answer:
76.9 m/s
Explanation:
total distance travelled is 750m + 250m = 1000m
the total time taken is 13 seconds.
1000m/13s = 76.9 m/s (1dp)