The correct answer is (A) from 2nd to 3rd shell.
The explanation :
when a gain of energy is the shift of the electrons from a shell of low energy to the shell of high energy
and we have here 2nd shell is the shell of low energy, and 3rd shell is the shell of high energy.
∴ (A) from 2nd to 3rd shell is the correct answer.
<u>Answer:</u> The concentration of solute is 0.503 mol/L
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

where,
= osmotic pressure of the solution = 24 atm
i = Van't hoff factor = 2 (for NaCl)
c = concentration of solute = ?
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the concentration of solute is 0.503 mol/L
We can calculate the final temperature from this formula :
when Tf = (V1* T1) +(V2* T2) / (V1+ V2)
when V1 is the first volume of water = 5 L
and V2 is the second volume of water = 60 L
and T1 is the first temperature of water in Kelvin = 80 °C +273 = 353 K
and T2 is the second temperature of water in Kelvin = 30°C + 273= 303 K
and Tf is the final temperature of water in Kelvin
so, by substitution:
Tf = (5 L * 353 K ) + ( 60 L * 303 K) / ( 5 L + 60 L)
= 1765 + 18180 / 65 L
= 306 K
= 306 -273 = 33° C
Answer:
The total heat required is 691,026.36 J
Explanation:
Latent heat is the amount of heat that a body receives or gives to produce a phase change. It is calculated as: Q = m. L
Where Q: amount of heat, m: mass and L: latent heat
On the other hand, sensible heat is the amount of heat that a body can receive or give up due to a change in temperature. Its calculation is through the expression:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the change in temperature (Tfinal - Tinitial).
In this case, the total heat required is calculated as:
- Q for liquid water. This is, raise 248 g of liquid water from O to 100 Celsius. So you calculate the sensible heat of water from temperature 0 °C to 100° C
Q= c*m*ΔT

Q=103,763.2 J
- Q for phase change from liquid to steam. For this, you calculate the latent heat with the heat of vaporization being 40 and being 248 g = 13.78 moles (the molar mass of water being 18 g / mol, then
)
Q= m*L

Q=562.0862 kJ= 562,086.2 J (being 1 kJ=1,000 J)
- Q for temperature change from 100.0
∘
C to 154
∘
C, this is, the sensible heat of steam from 100 °C to 154°C.
Q= c*m*ΔT

Q=25,176.96 J
So, total heat= 103,763.2 J + 562,086.2 J + 25,176.96 J= 691,026.36 J
<u><em>The total heat required is 691,026.36 J</em></u>
F. hold on to their protons more strongly