Answer:

Explanation:
Hello,
In this case, for the acid dissociation of formic acid (HCOOH) we have:

Whose equilibrium expression is:
![Ka=\frac{[H^+][HCOO^-]}{[HCOOH]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BHCOO%5E-%5D%7D%7B%5BHCOOH%5D%7D)
That in terms of the reaction extent is:

Thus, solving for
which is also equal to the concentration of hydrogen ions we obtain:

![[H^+]=0.00528M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.00528M)
Then, as the pH is computed as:
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
The pH turns out:

Regards.
Answer:
because in the different countries it is distributed unevenly.
Explanation:
hope this helps
Answer:
When light is shone on to the surface of a metal, its electrons absorb small amounts of energy and become excited into one of its many empty orbitals. The electrons immediately fall back down to lower energy levels and emit light. This process is responsible for the high luster of metals.
Explanation:
<em> </em><em>Your </em><em>well-wisher</em><em> </em><em>:-)</em>
My guess is on B since Hydroxide ions are OH- which is a basic ion not an acid (which can be symbolized by H+) and not D since its a theory that certain ions are acids.<span />