Answer:
A chemical formula for a molecular compound represents the composition of <u><em>a molecule.</em></u>
Explanation:
Chemical formulas are alphanumeric expressions that are used to indicate the composition of chemical substances. They consist of chemical symbols that indicate the elements that form a compound; The number of atoms provided by each element is also indicated by the use of a subscript, that is, a small number that is placed below and to the right of each element that so requires. When an element does not have a subscript, it is understood that there is only one atom of it in the substance.
Each molecule corresponds to a chemical formula, as well as a name according to the rules of the chemical nomenclature.
Then, <u><em>a chemical formula for a molecular compound represents the composition of a molecule.</em></u>
Answer:
<h2>9000 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 900 × 10
We have the final answer as
<h3>9000 N</h3>
Hope this helps you
<h3>
Answer:</h3>
150000 J
<h3>
General Formulas and Concepts:</h3>
<u>Chemistry</u>
<u>Thermodynamics</u>
Specific Heat Formula: q = mcΔT
- <em>q</em> is heat (in J)
- <em>m</em> is mass (in g)
- <em>c</em> is specific heat (in J/g °C)
- ΔT is change in temperature (in °C or K)
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
<em>Identify variables</em>
[Given] <em>m</em> = 225 g
[Given] <em>c</em> = 4.184 J/g °C
[Given] ΔT = 133 °C - -26.8 °C = 159.8 °C
[Solve] <em>q</em>
<u>Step 2: Solve for </u><em><u>q</u></em>
- Substitute in variables [Specific Heat Formula]: q = (225 g)(4.184 J/g °C)(159.8 °C)
- Multiply: q = (941.4 J/°C)(159.8 °C)
- Multiply: q = 150436 J
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
150436 J ≈ 150000 J
Topic: AP Chemistry
Unit: Thermodynamics
Book: Pearson AP Chemistry
<u>Answer:</u> The correct answer is Option c.
<u>Explanation:</u>
Vaporization is defined as the physical process in which liquid particles get converted to gaseous particles.

The value of standard Gibbs free energy is 0 for equilibrium reactions.
To calculate
for the reaction, we use the equation:

where,
= standard entropy change of vaporization
= standard enthalpy change of vaporization = 30.7 kJ/mol = 30700 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the reaction = 353.3 K
Putting values in above equation, we get:

Hence, the correct answer is Option c.
Answer:
H = m c ΔT
89.6 J = (20.0 g) × c × (40.0 - 30.0)°C
Specific heat of iron, c = 89.6 / [20.0 × (40.0 - 30.0)] J/(g°C) = 0.448 J/(g°C)