1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irakobra [83]
3 years ago
15

Consider flow in between two parallel plates located a distance H from each other. Fluid flow is driven by the bottom plate movi

ng to the right with a velocity of U (note, NO pressure gradient). The top plate has a fixed temperature of TT and the bottom plate has a temperature of Tb. Starting with the governing equations for incompressible flow, find the velocity profile and the temperature profile for the flow in between the plates. In addition, what is an expression for the heat flux at the bottom plate (assuming a thermal conductivity of k)
Engineering
1 answer:
katrin2010 [14]3 years ago
8 0
Wow I don’t
Know but I would
Help you
You might be interested in
Suppose the loop is moving toward the solenoid (to the right). Will current flow through the loop down the front, up the front,
Tems11 [23]

Answer:

See explanation

Explanation:

The magnetic force is

F = qvB sin θ

We see that sin θ = 1, since the angle between the velocity and the direction of the field is 90º. Entering the other given quantities yields

F

=

(

20

×

10

−

9

C

)

(

10

m/s

)

(

5

×

10

−

5

T

)

=

1

×

10

−

11

(

C

⋅

m/s

)

(

N

C

⋅

m/s

)

=

1

×

10

−

11

N

6 0
3 years ago
Read 2 more answers
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
3 years ago
Fill in the blank to correctly complete the statement below.
frutty [35]

Answer:

The invention of the pendulum-driven ___<u>clocks</u>___ in the 1600s paved the way for a new industrial era.

4 0
3 years ago
In a much smaller model of the Gizmo apparatus, a 5 kg mass drops 86 mm (0.086 m) and raises the temperature of 1 gram of water
Orlov [11]

Answer:

The amount of energy transferred to the water is 4.214 J

Explanation:

The given parameters are;

The mass of the object that drops = 5 kg

The height from which it drops = 86 mm (0.086 m)

The potential energy P.E. is given by the following formula

P.E = m·g·h

Where;

m = The mass of the object = 5 kg

g = The acceleration de to gravity = 9.8 m/s²

h = The height from which the object is dropped = 0.086 m

Therefore;

P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J

Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;

The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.

6 0
3 years ago
Show the ERD with relational notation with crowfoot. Your ERD must show PK, FKs, min and max cardinality, and correct line types
zhenek [66]

Answer

The answer and procedures of the exercise are attached in the following archives.

Step-by-step explanation:

You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.  

3 0
4 years ago
Other questions:
  • What’s another name for a service overcurrent device?
    11·1 answer
  • A tank contains 350 liters of fluid in which 50 grams of salt is dissolved. Pure water is then pumped into the tank at a rate of
    8·1 answer
  • Assuming the point estimate in Problem 6.36 is the true population parameter, what is the probability that a particular assay, w
    15·1 answer
  • HELP PLEASE<br> this is for drivers ed btw
    5·1 answer
  • Can a real refrigerator have higher COP than the COP of the Carnot refrigerator?
    7·2 answers
  • 7. Sockets internal designs come in what sizes?
    5·1 answer
  • Select the correct text in the passage.
    6·2 answers
  • According to the video, what are some tasks that Construction Managers perform? Check all that apply.
    9·2 answers
  • Which option identifies the concept represented in the following scenario?
    7·1 answer
  • Travel Planning or Destination Planning will help make your travel more efficient, and not necessary a risk reduction plan as yo
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!