A base generally releases a hydroxide ion (OH-) when dissolved in water.
There are exceptions, such as ammonia NH3, which acts as a base but does not produce OH- ions. There are three definitions of acids and bases (Arrhenius, Bronsted-Lowry, and Lewis) and each one looks at acid/base characteristics differently. OH- donation is the Arrhenius definition.
Answer:
a. 1810mL
Explanation:
When conditions for a gas change under constant pressure (and the number of molecules doesn't change), it follows Charles' Law:
where the temperatures must be measured in Kelvin
To convert from Celsius to Kelvin, add 273, or use the equation: 
For this problem, one must also recall that standard temperature is 0°C (or 273K).
So,
, and
.

![\dfrac{(1532.7[mL])}{(273[K])}=\dfrac{V_2}{(322.4[K])}](https://tex.z-dn.net/?f=%5Cdfrac%7B%281532.7%5BmL%5D%29%7D%7B%28273%5BK%5D%29%7D%3D%5Cdfrac%7BV_2%7D%7B%28322.4%5BK%5D%29%7D)
![\dfrac{(1532.7[mL])}{(273[K\!\!\!\!\!{-}])}(322.4[K\!\!\!\!\!{-}] )=\dfrac{V_2}{(322.4[K]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{----})}(322.4[K]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{----})](https://tex.z-dn.net/?f=%5Cdfrac%7B%281532.7%5BmL%5D%29%7D%7B%28273%5BK%5C%21%5C%21%5C%21%5C%21%5C%21%7B-%7D%5D%29%7D%28322.4%5BK%5C%21%5C%21%5C%21%5C%21%5C%21%7B-%7D%5D%20%29%3D%5Cdfrac%7BV_2%7D%7B%28322.4%5BK%5D%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B----%7D%29%7D%28322.4%5BK%5D%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B----%7D%29)
![1810.04571428[mL]=V_2](https://tex.z-dn.net/?f=1810.04571428%5BmL%5D%3DV_2)
Adjusting for significant figures, this gives ![V_2=1810[mL]](https://tex.z-dn.net/?f=V_2%3D1810%5BmL%5D)
The ashes released from the volcano could lead to acid rain and ash clouds.
We are given the chemical reaction and the amount of reactant used for the process. We use these data together to obtain what is asked. We do as as follows:
0.882 mol H2O2 ( 1 mol O2 / 2 mol H2O2 ) = 0.441 mol O2 produced
Hope this answers the question.