Answer:
Explanation:
average speed more than 25.0m/s.
Answer:
Explanation:
Initial moment of inertia of the earth I₁ = 2/5 MR² , M is mss of the earth and R is the radius . If ice melts , it forms an equivalent shell of mass 2.3 x 10¹⁹ Kg
Final moment of inertia I₂ = 2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²
For change in period of rotation we shall apply conservation of angular momentum law
I₁ ω₁ = I₂ ω₂ , ω₁ and ω₂ are angular velocities initially and finally .
I₁ / I₂ = ω₂ / ω₁
I₁ / I₂ = T₁ / T₂ , T₁ , T₂ are time period initially and finally .
T₂ / T₁ = I₂ / I₁
(2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²) / 2/5 MR²
1 + 5 / 3 x 2.3 x 10¹⁹ / M
= 1 + 5 / 3 x 2.3 x 10¹⁹ / 5.97 x 10²⁴
= 1 + .0000064
T₂ = 24 (1 + .0000064)
= 24 hours + .55 s
change in length of the day = .55 s .
Answer:
Actually it's 2.50 m/s, sorry
Explanation:
It is solved by using momentum conservation equation
combined mass of crow and feeder = 450+670=1120 gm
let the recoil speed of feeder be v m/s
Then applying momentum conservation we get;
1120×1.5 = 670×v
v= 2.50 m/s
the speed at which the feeder initially recoils backwards = 2.50 m/s
Answer:
The correct answer is a Low earth orbit.
Explanation:
A low earth orbit can be understood as an earth orbit with an altitude of 1,000 miles or less. It is a satellite sustem that employs many satelites, in fact, most man-made objects that are currently in outer-space are part of this low earth orbit. (LEO).
The most famous LEO satellite system is the one from planet earth. Almost every space flight that human beings have ever done are done in LEO, and every spacial station is located in this zone.
In conclusion, A low earth orbit satellite system employs many satellites, each in an orbit at an altitude of less than 1,000 miles.
Answer:
<h2>Displacement</h2><h2>Distance</h2><h2>Velocity</h2><h2> Acceleration</h2><h2>Speed</h2><h2> Time</h2>
Explanation:
HOPE IT HELPS