Each mole of substance contains 6.02 x <span>1023</span> component parts, in this case water molecules.
If you have 2.3 moles of water you will have 2.3 x 6.02 x <span>1023</span> which is 1.3846 x <span>1024</span> molecules.
Each molecule contains 2 hydrogen atoms, so the total number of hydrogen atoms in 2.3 moles of water will be 2 x 1.3846 x <span>1024</span> = 2.7692 x <span>1024</span>.
Please mark brainliest, thanks :)
Answer:
In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical change occurs. A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage of an overall chemical reaction.
Explanation:
Answer:
Explanation:
Drug for the treatment of disease. Chemistry contributes to the preparation and use of materials for surgery (sutures, artificial skin, and sterile materials). ...
Surgical procedure. ...
Blood samples for laboratory testing. ...
Blood glucose testing device.
Explanation:
(a) The given data is as follows.
Load applied (P) = 1000 kg
Indentation produced (d) = 2.50 mm
BHI diameter (D) = 10 mm
Expression for Brinell Hardness is as follows.
HB =
Now, putting the given values into the above formula as follows.
HB =
=
=
= 200
Therefore, the Brinell HArdness is 200.
(b) The given data is as follows.
Brinell Hardness = 300
Load (P) = 500 kg
BHI diameter (D) = 10 mm
Indentation produced (d) = ?
d = ![\sqrt{(D^{2} - [D - \frac{2P}{HB} \pi D]^{2})}](https://tex.z-dn.net/?f=%5Csqrt%7B%28D%5E%7B2%7D%20-%20%5BD%20-%20%5Cfrac%7B2P%7D%7BHB%7D%20%5Cpi%20D%5D%5E%7B2%7D%29%7D)
= ![\sqrt{(10 mm)^{2} - [10 mm - \frac{2 \times 500 kg}{300 \times 3.14 \times 10 mm}]^{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B%2810%20mm%29%5E%7B2%7D%20-%20%5B10%20mm%20-%20%5Cfrac%7B2%20%5Ctimes%20500%20kg%7D%7B300%20%5Ctimes%203.14%20%5Ctimes%2010%20mm%7D%5D%5E%7B2%7D%7D)
= 4.46 mm
Hence, the diameter of an indentation to yield a hardness of 300 HB when a 500-kg load is used is 4.46 mm.
Just add up the molar masses of each element.
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.