Answer:
Final velocity (v) of an object equals initial velocity (u) of that object plus acceleration (a) of the object times the elapsed time (t) from u to v. Use standard gravity, a = 9.80665 m/s2, for equations involving the Earth's gravitational force as the acceleration rate of an object.
Explanation:
The statement that describes how work and power are similar is D. you must know time and energy to calculate both.
I am not completely sure though, so I hope this helps. :)
Kinetic energy is the energy for a catapult.
Answer:
The velocity will be v1 = 0.58[m/s]
Explanation:
This problem can be solved by the law of conservation of the moment, which explains that the moment of a system remains constant because there are no external forces acting on it.
We have the following initial data:
m1 = mass of the skater = 55 [kg]
m2 = mass of the ball = 3 [kg]
v2 = velocity of the ball = 8 [m/s]
Therefore:
![m_{1}*v_{1}+m_{2}*v_{2}=m_{1}*v_{1}+m_{2}*v_{2}\\(50*0)+(3*0)=(50*v_{1})+(3*8)\\50+3-24=50*v_{1}\\v_{1}= 0.58[m/s]](https://tex.z-dn.net/?f=m_%7B1%7D%2Av_%7B1%7D%2Bm_%7B2%7D%2Av_%7B2%7D%3Dm_%7B1%7D%2Av_%7B1%7D%2Bm_%7B2%7D%2Av_%7B2%7D%5C%5C%2850%2A0%29%2B%283%2A0%29%3D%2850%2Av_%7B1%7D%29%2B%283%2A8%29%5C%5C50%2B3-24%3D50%2Av_%7B1%7D%5C%5Cv_%7B1%7D%3D%200.58%5Bm%2Fs%5D)
C
Because magnet involves 2 opposite poles so therefore it would have to be C