The mass of sodium hydrogen carbonate : 10.5 g
<h3>Further explanation</h3>
Given
1.5 dm' of CO₂
1 mol gas= 24 L at RTP(25 °C, 1 atm)
Required
the mass of sodium hydrogen carbonate
Solution
Decomposition reaction of Sodium hydrogen carbonate :
2 NaHCO₃ (s) ⇒ Na₂
CO₃ (s) + H₂
O(g) + CO₂ (g)
mol CO₂ :

From the equation, mol ratio of NaHCO₃ : CO₂ (g) = 2 : 1, so mol NaHCO₃ :

Mass NaHCO₃(MW=23+1+12+3.16=84 g/mol) :

Yeah lol. i mean it’s slime it shouldn’t be this complex, but yes.
Answer:
1. Absorbs electromagnetic energy
2. Energy difference between the two orbits.
Explanation:
Bohr precisely describe the processes of absorption and emission of energy in terms of electronic structure. According to Bohr's model, an electron would absorb energy in the form of photons to get excited to a higher energy level as long as the photon's energy was equal to the energy difference between the initial and final energy levels. After jumping to the higher energy level or the excited state, the excited electron would be in a less stable position, so it would quickly emit a photon to relax back to a lower, more stable energy level.
Answer:
Ver las respuestas abajo.
Explanation:
Este problema se puede resolver conociendo la relacion entre horas y minutos, sabemos que:
1 hora [h] → 60 minutos [min]
De esta manera:
2 [min] = 2/60 = 0.033 [h]
15 [min] = 15/60 = 0.25 [h]
30 [min] = 30/60 = 0.5 [h]
10 [min] = 10/60 = 0.166 [h]
6 [min] = 6/60 = 0.1 [h]
20 [min] = 20/60 = 0.33 [h]
5 [min] = 5/60 = 0.0833 [h]