Explanation:
(a)
The initial vertical velocity is 13 m/s. At the maximum height, the vertical velocity is 0 m/s.
v = at + v₀
0 = (-9.8) t + 13
t ≈ 1.33 s
(b)
Immediately prior to the explosion, the ball is at the maximum height. Here, the vertical velocity is 0 m/s, and the horizontal velocity is constant at 25 m/s.
v = √(vx² + vy²)
v = √(25² + 0²)
v = 25 m/s
(c)
Momentum is conserved before and after the explosion.
In the x direction:
m vx = ma vax + mb vbx
m (25) = (⅓ m) (0) + (⅔ m) (vbx)
25m = (⅔ m) (vbx)
25 = ⅔ vbx
vbx = 37.5 m/s
And in the y direction:
m vy = ma vay + mb vby
m (0) = (⅓ m) (0) + (⅔ m) (vby)
0 = (⅔ m) (vby)
vby = 0 m/s
Since the vertical velocity hasn't changed, and since Fragment B lands at the same height it was launched from, it will have a vertical velocity equal in magnitude and opposite in direction as its initial velocity.
vy = -13 m/s
And the horizontal velocity will stay constant.
vx = 37.5 m/s
The velocity vector is (37.5 i - 13 j) m/s. The magnitude is:
v = √(vx² + vy²)
v = √(37.5² + (-13)²)
v ≈ 39.7 m/s
Answer:
i = 101.4A
Explanation:
The steps to the solution can be found in the attachment below.
We have been given the frequency f = 60Hz. From this we can calculate the angular frequency of the power line.
It is assumed that sinwt = –1 in order to calculate the time varying current. Although the magnitude of the current is large, consideration should also be given to the distance between the coil and the power line. The induced emf is small considering the area of the coil which is 7.85×10-⁵m².
Answer:
answer is (c) density is not a characteristics of vibration.
hope it is right answer for it!!
The magnitude of the electrical force between q2 and q3 is given as a ratio between the product of their charges and the square of the distance of separation.
<h3>What is the magnitude of electrical forces between two charges?</h3>
The magnitude of the electrical force between two charges refers to the attractive or repulsive forces that exists between two charges separated by a given distance in an electric field.
The magnitude of the electrical force, F between the two charges q2 and q3 is given be my the formula below

Therefore, the magnitude of the electrical force between q2 and q3 is given as a ratio between the product of their charges and the square of the distance of separation.
Learn more about electrical force at: brainly.com/question/17692887
#SPJ4
Answer:
An increase in the air temperature will cause water temperatures to increase as well. As water temperatures increase, water pollution problems will increase, and many aquatic habitats will be negatively affected.
Explanation:
Lower levels of dissolved oxygen due to the inverse relationship that exists between dissolved oxygen and temperature. As the temperature of the water increases, dissolved oxygen levels decrease.
Increases in pathogens, nutrients and invasive species.
Increases in concentrations of some pollutants such as ammonia and pentachlorophenol due to their chemical response to warmer temperatures.
Increase in algal blooms (Photo of algal blooms).
Loss of aquatic species whose survival and breeding are temperature dependent.
Change in the abundance and spatial distribution of coastal and marine species and decline in populations of some species.
Increased rates of evapotranspiration from waterbodies, resulting in shrinking of some waterbodies such as the Great Lakes.