1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
2 years ago
13

A rocket is launched from rest and moves in a straight line at 30.0 degrees above the horizontal with an acceleration of 35.0 m/

s2. After 25.0 s of powered flight, the engines shut off and the rocket follows a parabolic path back to earth. Find the time of flight from launch to impact. HINT: Simple projectile motion after engines are shut down.
Physics
1 answer:
klemol [59]2 years ago
6 0

Answer:

t = 123.59s

Explanation:

For the launch pad section:

Vf = Vo + a*t  where Vo=0.

Vf = 35*25 = 875m/s

The distance traveled during the launch:

d = Vo*t+\frac{a*t^2}{2} = 0+\frac{35*25^2}{2} = 10937.5m

Now the projectile motion, we know that its initial speed is the speed calculated previously and the initial height is the y-component of the previously calculated distance.

\Delta Y = Vo*sin(30)*t - \frac{g*t^2}{2}

-d*sin(30) = Vo*sin(30)*t - \frac{g*t^2}{2}  where d= 10937.5m; Vo=875m/s.

Solving for t:

t1 = -11.093s   t2 = 98.59s

So, the total time of flight will be:

t_{total} = t_{launch}+t_{projectile}=25+98.59 = 123.59s

You might be interested in
Suppose that you have a 680 Ω, a 720 Ω and a 1.20 kΩ resistor. (a) What is the maximum resistance you can obtain by combining th
Delvig [45]

Explanation:

As the given data is as follows.

    R_{1} = 680 \ohm ohm\ohm,    R_{2} = 720 \ohm ohm,

   R_{3} = 1.2 k\ohm = 1200 \ohm   (as 1 k ohm = 1000 m)

(a)   We will calculate the maximum resistance by combining the given resistances as follows.

      Max. Resistance = R_{1} + R_{2} + R_{3}

                                  = (680 + 720 + 1200) \ohm ohm

                                  = 2600 ohm

or,                               = 2.6 k\ohm ohm

Therefore, the maximum resistance you can obtain by combining these is 2.6 k\ohm ohm.

(b)   Now, the minimum resistance is calculated as follows.

      Min. Resistance = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}

                                 = \frac{1}{680} + \frac{1}{720} + \frac{1}{1200}

                                 = 3.683 \times 10^{-3} ohm

Hence, we can conclude that minimum resistance you can obtain by combining these is 3.683 \times 10^{-3} ohm.

3 0
2 years ago
A large pot is placed on a stove and 1.2 kg of water at 14°C is added to the pot. The temperature of the water is raised evenly
CaHeK987 [17]

Answer:

100°heat

Explanation:

since when i calculate this and that, the answer is 100° heat.

sorry if it is inconvenient

3 0
3 years ago
As a physics instructor hurries to the bus stop, her bus passes her, stops ahead, and begins loading passengers. She runs at 6.0
Alika [10]

velocity of the physics instructor with respect to bus

v = 6 m/s

acceleration of the bus is given as

a = 2 m/s^2

acceleration of instructor with respect to bus is given as

a = -2 m/s^2

now the maximum distance that instructor will move with respect to bus is given as

v_f^2 - v_i^2 = 2 a d

0 - 6^2 = 2(-2)(d)

-36 = - 4 d

d = 9 m

so the position of the instructor with respect to door is exceed by

\delta x = 9 - 6 = 3 m

so it will be moved maximum by 3 m distance

7 0
3 years ago
The average Intensity of the electromagnetic field due to sunlight at the surface of the earth is 1400 W/m^2. Calculate the maxi
Ann [662]

Answer:

1027 N/C

3.42 x 10⁻⁶ T

Explanation:

I = Intensity of electromagnetic field = 1400 W/m²

E₀ = Maximum value of electric field

Intensity of electromagnetic field is given as

I = (0.5) ε₀ E₀² c

1400 =  (0.5) (8.85 x 10⁻¹²) (3 x 10⁸) E₀²

E₀ = 1027 N/C

B₀ = maximum value of magnetic field

using the equation

E₀ = B₀ c

1027 = B₀ (3 x 10⁸)

B₀ = 3.42 x 10⁻⁶ T

4 0
3 years ago
A motorcyclist changes the velocity of his bike from 20.0 meters/second to 35.0 meters/second under a constant acceleration of 4
shutvik [7]
You can use the equation V=Vo+at since the acceleration is constant. Plugging in the values you know, you will get an answer of 3.75 seconds
8 0
3 years ago
Other questions:
  • masses of 3kg on a smooth horizontal table.It is connected by a light string passing at the edge of the table to another mass of
    11·1 answer
  • How small are the wavelengths of gamma ray radiation?
    13·1 answer
  • Determine the gravitational force of attraction between the Earth and the Sun given the mass of the earth is 6 x 10^24 kg, the m
    13·1 answer
  • Hi, could someone please answer the first 3 questions of each planet
    15·1 answer
  • Air resistance is a type of friction true or false
    15·2 answers
  • A car moving with a velocity 15m/s and accelerating by 5m/s² attempts to reach a car moving with 30 m/s velocity.What distance s
    14·1 answer
  • A particle decelerates uniformly from a speed of 30 cm/s to rest in a time interval of 5.0 s. It then has a uniform acceleration
    10·1 answer
  • A 500 500500- kg kgstart text, k, g, end text object is accelerating to the right at 10 cm / s 2 10 cm/s 2 10, start text, space
    8·2 answers
  • What happens if balanced forces are applied to a moving object? A. The object stops moving. B. The object moves faster in the sa
    7·1 answer
  • Which wave shown has more energy?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!