S= 343m/s
F=256Hz
WL= 343ms/256-1
WL=V/F
= 1.339844m
If one of the variables is changed, that tells nothing about what happens to the other one, or IF anything happens, or when, or how long it lasts. Because they are UN-RELATED. You just said so yourself.
None of the choices says this.
Answer:
the period of the 16 m pendulum is twice the period of the 4 m pendulum
Explanation:
Recall that the period (T) of a pendulum of length (L) is defined as:

where "g" is the local acceleration of gravity.
SInce both pendulums are at the same place, "g" is the same for both, and when we compare the two periods, we get:

therefore the period of the 16 m pendulum is twice the period of the 4 m pendulum.
Answer:
346.66 Hz
Explanation:
= Length of string which is unfingered = l
= Length of string which is vibrate when fingered = 
= Unfingered frequency = 260 Hz
= Fingered frequency
Frequency is inversely proportional to length

So,

The frequency of the fingered string is 346.66 Hz
<span>In Ionic type of bonding, electrons are lost (more
protons than electrons and positive charge) or gained (more electrons than
protons, still a negative charge) by atoms, and the atoms are held together by
electrical attraction in the process. Covalent bondings are the sharing of electrons
as well as partial bondings. Covalent bondings’ electrons have the same charges
thus, there is no gaining or losing electrons in the process of sharing. Strong
bondings are applicable only to Hydrogen (H) atoms. </span>