Answer:
(a) Workdone = -27601.9J
(b) Average required power = 1314.4W
Explanation:
Mass of hoop,m =40kg
Radius of hoop, r=0.810m
Initial angular velocity Winitial=438rev/min
Wfinal=0
t= 21.0s
Rotation inertia of the hoop around its central axis I= mr²
I= 40 ×0.810²
I=26.24kg.m²
The change in kinetic energy =K. E final - K. E initail
Change in K. E =1/2I(Wfinal² -Winitial²)
Change in K. E = 1/2 ×26.24[0-(438×2π/60)²]
Change in K. E= -27601.9J
(a) Change in Kinetic energy = Workdone
W= 27601.9J( since work is done on hook)
(b) average required power = W/t
=27601.9/21 =1314.4W
Answer: 10 s, 30 m/s , 150 m
Explanation:
Given
The speed of motorcyclist is 
The initial speed of a police motorcycle is 
acceleration of police motorcycle is 
Police will catch the motorcyclist when they traveled equal distances
distance traveled by motorcyclist in time t is

Distance traveled by Police in time t is

put 

Police officer's speed at that time is

Distance traveled by each vehicle is

Answer:
The thermal conductivity of the wall = 40W/m.C
h = 10 W/m^2.C
Explanation:
The heat conduction equation is given by:
d^2T/ dx^2 + egen/ K = 0
The thermal conductivity of the wall can be calculated using:
K = egen/ 2a = 800/2×10
K = 800/20 = 40W/m.C
Applying energy balance at the wall surface
"qL = "qconv
-K = (dT/dx)L = h (TL - Tinfinity)
The convention heat transfer coefficient will be:
h = -k × (-2aL)/ (TL - Tinfinty)
h = ( 2× 40 × 10 × 0.05) / (30-26)
h = 40/4 = 10W/m^2.C
From the given temperature distribution
t(x) = 10 (L^2-X^2) + 30 = 30°
T(L) = ( L^2- L^2) + 30 = 30°
dT/ dx = -2aL
d^2T/ dx^2 = - 2a
Answer: A while driving a car. It is unsafe