Answer:
G = 6,786 10⁻¹¹ m³ / s² kg
Explanation:
The law of universal gravitation is
F = G m M/ r²
Where G is the gravitational constant, m and M are the masses of the bodies and r is the distance from their centers
Let's use Newton's second law
F = m a
The acceleration is centripetal
a =
We replace
G m M / r² = m
G =
r² / M
Let's replace and calculate
G = 2.7 10⁻³ (3.88 10⁸)² / 5.99 10²⁴
G = 6,786 10⁻¹¹ m³ / s² kg
Let's perform a dimensional analysis
[N m²/kg²] = [kg m/s² m² / kg²] = [m³ / s² kg]
Answer:
Please find the answer in the explanation.
Explanation:
Given that 16 g CH4 + 64 g 02 - 44 g CO2 + 36g H2O
To explain the law of conservation of mass and describe how the equation represents the law of conservation of mass, let me first start from law.
The law state that: mass can neither be created nor destroyed.
The mass of each element at the reaction side must be equal or the Same with the magnitude of mass at the product
The equation represents the law of conservation of mass because the mass of molecules at the right hand side is equal to or balance with the molecules at the left hand side. For example, the number of Oxygen, and othe elements are the at both side.
Answer:

Explanation:
The magnitude of the electrostatic force between two charged objects is

where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
The force is attractive if the charges have opposite sign and repulsive if the charges have same sign.
In this problem, we have:
is the distance between the charges
since the charges are identical
is the force between the charges
Re-arranging the equation and solving for q, we find the charge on each drop:

42- C
43- A
44- C
45- A
46- B
47- D
Answer:
First law of motion
Explanation:
I say this because this example shows how an object is staying persistent unless it's compled to change
(not sure)