1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ira [324]
3 years ago
6

I can’t figure it out! Please help I have a test tomorrow

Physics
1 answer:
nignag [31]3 years ago
7 0

it's 20m/s i.e. no. (2)


You might be interested in
An electron in a mercury atom jumps from level a to level g by absorbing a single
statuscvo [17]

Answer:

7.39ev

Explanation:

Energy levels are found inside the atom. Electrons occupy these energy levels depending on the energy they possess. Electrons can move from one energy level to another due to absorption or emission of a photon or other factors. As the electron, jumps from a higher energy level to a lower energy level emitting a photon of measurable frequency, the photon carries energy equal to the amount of energy between the gap of the levels. This idea was first proposed by Neils Bohr and became the forerunner of the wave mechanical model of the atom.

Hence the energy of a photon is the energy of the gap between the two energy levels. Since Ea= 2.48ev and Eg= 10.38 ev.

If an electron jumps from Ea to Eg, the energy of the photon absorbed is given by;

E=Eg-Ea

E= 10.38ev - 2.48ev

E= 7.39ev

3 0
3 years ago
Choose the more reactive metal. Al or Zn
horsena [70]
The truth is both of them are more reactive metal. 
8 0
3 years ago
Read 2 more answers
What are the two distinct ways in which energy moves outward from the solar core to photosphere?
butalik [34]

Answer:

The energy may be carried in the form of (1) radiation, where energy travels in the form of light, and (2) convection, where energy is carried by physical motion of upwelling solar gas.

Explanation:

6 0
2 years ago
What gravitational force does the moon produce on the earth is their centers are 3. 88x10^8 m apart and the moon has a mass of 7
vitfil [10]

The Moon is 3.8 108 m from Earth and has a mass of 7.34 1022 kg. 5.97 1024 kg is the mass of the Earth.

<h3>What kind of gravitational pull does the moon have on the planet?</h3>

On the surface of the Moon, the acceleration caused by gravity around   1.625 m/s2 which is 16.6% greater than on the surface of the Earth 0.166.

<h3>What does the Earth's center's gravitational pull feel like?</h3>

Gravity is zero if you are in the centre of the earth since everything around you is pulling "up" (up is the only direction).

<h3>Where is the Earth's and the moon's gravitational centre?</h3>

It is around 1700 kilometres below Earth's surface.

To know more about  gravitational force visit:-

brainly.com/question/12528243

#SPJ4

6 0
1 year ago
A photon of wavelength 2.78 pm scatters at an angle of 147° from an initially stationary, unbound electron. What is the de Brogl
Elena-2011 [213]

Answer:

2.07 pm

Explanation:

The problem given here is the very well known Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta is the angle of scattering.

Given that, the scattering angle is, \theta=147^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8} } (1-cos147^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos147^\circ ) m.\\\lambda^{'}-\lambda=2.42(1-cos147^\circ ) p.m.\\\lambda^{'}-\lambda=4.45 p.m.

Here, the photon's incident wavelength is \lamda=2.78pm

Therefore,

\lambda^{'}=2.78+4.45=7.23 pm

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

where,\vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda,

and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therefore,

\lambda_{e}=\frac{2.78\times 7.23}{\sqrt{2.78^{2}+7.23^{2}-2\times 2.78\times 7.23\times cos147^\circ }} pm\\\lambda_{e}=\frac{20.0994}{9.68} = 2.07 pm

This is the de Broglie wavelength of the electron after scattering.

6 0
3 years ago
Other questions:
  • Driving at 75m/s, you hit the brakes on your new car, accelerating at a rate of -20m/s. How long will it take the car to come to
    9·1 answer
  • Direction of current in a solenoid depends on the direction of magnetic field
    6·1 answer
  • Which planet has the largest day-night temperature difference?
    7·1 answer
  • Spinning situations???
    13·2 answers
  • What is the input of a person pulling a rope 20 meters with a force of 200 N
    12·1 answer
  • Weight refers to the force of gravity acting on a mass. We often calculate the weight of an object by multiplying its mass by th
    14·1 answer
  • Two bumper cars move in a straight line with the following equations of motion: x1 = -4.0 m + (1.1 m/s )t x2 = 8.8 m + (-2.9 m/s
    12·1 answer
  • The speed of the cart after 8 seconds of Low fan speed is
    13·1 answer
  • Odtake them for freee​
    6·2 answers
  • How much sugar can dissolve in 25 ml of water 25 C
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!