Answer:
<h2>The temperature of the gas is 48.75 Kelvin.</h2>
Explanation:
Using the ideal gas equation as shown
PV = nRT where;
P is the pressure of the gas in ATM
V is the volume of the gas
n is the number of moles
R is the ideal gas constant
T is the temperature in Kelvin
From the formula, 
Given the following parameters V = 1litre, n = 0.5moles. pressure = 2ATM
R = 0.08206 atm L/molK
On substituting to get the temperature we have:

Answer:
y maximum 3.54 m, value X 2.35 m
Explanation:
We have a projectile launch problem, let's calculate the maximum height of the projectile, where the vertical speed must be zero
Vyf² = Vyo² - 2g (Y-Yo)
Where Yo is the initial height of the ramp 1.5 m
0 = Vyo² -2g (Y-Yo)
Y-Yo = Voy² / 2g
Y = Yo + Voy² / 2g
Let's calculate the velocity components using trigonometry
Voy = vo without T
Vox = Vo cost
Voy = 7.3 sin 60
Vox = 7.3 cos 60
Voy = 6.32 m / s
Vox = 3.65 m / s
Let's calculate the maximum height
Y = 1.5 +6.32²/2 9.8
Y = 3.54 m
This is the maximum height from the ground
b) They ask us for the position of this point horizontally, we can calculate it looking for the time it took for the skateboarder to reach the highest point
Vfy = Voy - gt
0 = Voy - gt
t = Voy / g
t = 6.32 / 9.8
t = 0.645 s
Since there is no acceleration on the x-axis, we have a uniform movement, we can calculate the distance for this time
X = Vox t
X = 3.65 0.645
X= 2.35 m
Answer:
An object in equilibrium has a net force of zero
Static equilibrium describes an object at rest having equal and balanced forces acting upon it.
Dynamic equilibrium describes an object in motion having equal and balanced forces acting upon it.
Explanation:
An object is said to be in equilibrium when a net force of zero is acting on it. When this condition occurs, the object will have zero acceleration, according to Newton's second law:

where F is the net force, m the mass of the object, a the acceleration. Since F=0, then a=0. As a result, we have two possible situations:
- If the object was at rest, then it will keep its state of rest. In this case, we talk about static equilibrium.
- If the object was moving, it will keep moving with constant velocity. In this case, we talk about dynamic equilibrium.
Answer:b
Explanation:
Given
mass of first cart 
mass of second cart 
velocity of first cart 
conserving momentum



Initial kinetic Energy 


Final Kinetic Energy


Ratio of initial Kinetic Energy to the Final Kinetic Energy

At a point near the rim of the disk, it will have a<span> non-zero radial acceleration and a zero tangential acceleration. Also known as centripetal acceleration, radial acceleration takes place along the radius of the disk. On the other hand, the tangential acceleration is along the path of disk's motion.</span>