The answer is diffraction or interference
Answer:
m = 15.15 kg
Explanation:
Newton's Second Law of motion states that when an unbalanced force is applied on a body, an acceleration is produced in it in the direction of force. The component of force along the horizontal direction here, will be given by the Newton's Second Law as:
Fx = ma
F Cosθ = ma
where,
F = Magnitude of Force = 85 N
θ = Angle with horizontal = 27°
m = mass of object = ?
a = acceleration of object = 5 m/s²
Therefore,
85 N Cos 27° = m(5 m/s²)
m = 75.73 N/5 m/s²
<u>m = 15.15 kg</u>
Answer:
(a) F = 15.12 N
(b) a = 30.24 m/s²
(c) To Left
Explanation:
(a)
The magnitude of the spring force is given by Hooke's Law as follows:
F = kx
where,
F = Spring Force = ?
k = Spring Constant = 126 N/m
x = Displacement = A = 0.12 m
Therefore,
F = (126 N/m)(0.12 m)
<u>F = 15.12 N</u>
(b)
The magnitude of acceleration can be found by comparing the spring force with the unbalanced force formula of Newton's Second Law:
F = ma
where,
F = Spring Force = 15.12 N
m = mass of block = 0.5 kg
a = magnitude of acceleration = ?
15.12 N = 0.5 kg (a)
a = 15.12 N/0.5 kg
<u>a = 30.24 m/s²</u>
<u></u>
(c)
Since, the acceleration is always directed towards mean (equilibrium) position in periodic motion. Therefore, the direction of the acceleration at the time of release will be <u>to left.</u>
Answer:

Explanation:
In order to find the acceleration of the block, we have to find the net force acting on it along the direction parallel to the incline.
However, there is only one force acting on the block along this direction: it is the component of the weight parallel to the plane, given by

where
m = 15 kg is the mass of the block
is the acceleration of gravity
is the angle of the incline
According to Newton's second law, the net force is proportional to the acceleration, a:

So we can write:

And so, the acceleration is:
