Answer:
the distance traveled by Charlotte in feet is 338.44 ft
Explanation:
Given;
speed of Charlotte, u = 66.5 mi/h
time of motion, t = 3.47 s
The distance traveled by Charlotte in feet is calculated as;

Therefore, the distance traveled by Charlotte in feet is 338.44 ft
Answer:
Explanation:
The given time is 1 / 4 of the time period
So Time period of oscillation.
= 4 x .4 =1.6 s
When the block reaches back its original position when it came in contact with the spring for the first time , the block and the spring will have maximum
velocity. After that spring starts unstretching , reducing its speed , so block loses contact as its velocity is not reduced .
So required velocity is the maximum velocity of the block while remaining in contact with the spring.
v ( max ) = w A = 1.32 m /s.
Answer:
Part a)

Part b)

Part c)

Part d)
from t = 0 to t = 4.9 s
so the reading of the scale will be same as that of weight of the block
Then its speed will reduce to zero in next 3.2 s
from t = 4.9 to t = 8.1 s
The reading of the scale will be less than the actual mass
Explanation:
Part a)
When elevator is ascending with constant speed then we will have



So it will read same as that of the mass

Part b)
When elevator is decending with constant speed then we will have



So it will read same as that of the mass

Part c)
When elevator is ascending with constant speed 39 m/s and acceleration 10 m/s/s then we will have



Reading is given as



Part d)
Here the speed of the elevator is constant initially
from t = 0 to t = 4.9 s
so the reading of the scale will be same as that of weight of the block
Then its speed will reduce to zero in next 3.2 s
from t = 4.9 to t = 8.1 s
The reading of the scale will be less than the actual mass
Answer:
Conductivity probe
Explanation:
The Conductivity Probe consists of two electrodes(also referred to as probes)or an electrode and a wall vessel where the material in the vessel completes the circuit as the level rises in the vessel.
It is used in measuring solution conductivity or total ionic concentration of aqueous samples.