Answer:
B
Explanation:
From Newton's law of motion, we have:
V^2 = U^2 + 2gH
Where V and U are final and initial velocity respectively.
H is the height.
For the object to have a sustain a maximum height it means the final velocity of the object is zero.
By computing the height of the object sustain by A, we have:
0^2 = 2^2 -2×10×H
0= 4 -20H
4 = 20H;
H= 0.2m
For object B we have;
0^2 = 1^2 -2×10×H
0 = 1 -20H
H = 1/20= 0.05m
From computing the height sustain by both objects, we see object B is projected at a shorter height into atmosphere than A.
Hence object B will return to the ground first.
Answer:
The answer would be 735J
Explanation:
PE=mgh
=(mass)(force of gravity)(height)
=(25kg)(9.8m/s^2)(3m)
=735J
The igneous rocks which were deposited on the surface and then cooled are known as extrusive. These rocks are a result of a magma reaching the surface of the Earth which cools the magma quickly. Examples are rhyolite, basalt, obsidian and andesite.
If it is not exposed to sunlight often... then it might not be able to produce sufficient amounts
Answer:
1.87 s
Explanation:
d = distance traveled by the water wave = 64 m
t = time taken to travel the distance = 14 s
= speed of water wave
Speed of water wave is given as


= 4.6 m/s
= wavelength of the wave = 859 cm = 8.59 m
T = period of the wave
period of the wave is given as


T = 1.87 s