There are several actions that can be used to increase the action force of a canoe that is moving through water. One can increase the rate of striking or strike harder than before with a bigger paddle. Using a lighter canoe can also be helpful for increasing the speed. I hope the answer comes to your help.
A girl standing on a floor would have two opposite forces acting on it. These forces are the weight and the normal force. Since no other forces are acting and that the girl is at rest, then the weight must equate to the normal force. Therefore, the supporting force would be:
F = mg = 55kg (9.81 m/s^2) = 539.55 N
<span>
English "natural philosopher" (the contemporary term for physicist) Michael Faraday is renowned for his discovery of the principles of electro-magnetic induction and electro-magnetic rotation, the interaction between electricity and magnetism that led to the development of the electric motor and generator. The unit of measurement of electrical capacitance - the farad (F) - is named in his honor.
Faraday's experimental work in chemistry, which included the discovery of benzene, also led him to the first documented observation of a material that we now call a semiconductor. While investigating the effect of temperature on "sulphurette of silver" (silver sulfide) in 1833 he found that electrical conductivity increased with increasing temperature. This effect, typical of semiconductors, is the opposite of that measured in metals such as copper, where conductivity decreases as temperature is increased.
In a chapter entitled "On Conducting Power Generally" in his book Experimental Researches in Electricity Faraday writes "I have lately met with an extraordinary case ... which is in direct contrast with the influence of heat upon metallic bodies ... On applying a lamp ... the conducting power rose rapidly with the heat ... On removing the lamp and allowing the heat to fall, the effects were reversed."
We now understand that raising the temperature of most semiconductors increases the density of charge carriers inside them and hence their conductivity. This effect is used to make thermistors - special resistors that exhibit a decrease in electrical resistance (or an increase in conductivity) with an increase in temperature.
<span>
Next Milestone
</span>
Contemporary Documents
<span>
<span>Faraday, M. Experimental Researches in Electricity, Volume 1. (London: Richard and John Edward Taylor, 1839) pp.122-124 (para. 432). Note: This section appears on different pages in later editions of the book. The material in the book is reprinted from articles by Faraday published in the Philosophical Transactions of the Royal Society of 1831-1838. </span>
</span>
More Information
<span>
<span>Hirshfeld, Alan W. The Electric Life of Michael Faraday. Walker & Company (March 7, 2006).</span>
<span>Friedel, Robert D. Lines and Waves: Faraday, Maxwell and 150 Years of Electromagnetism. Center for the History of Electrical Engineering, Institute of Electrical and Electronics Engineers (1981).</span>
</span>
</span>
Answer:
a) v = 21.34 m/s
b) v = 21.34 m/s
c) v = 21.34 m/s
Explanation:
Mass of the snowball, m = 0.560 kg
Height of the cliff, h = 14.2 m
Initial velocity of the ball, u = 13.3 m/s
θ = 26°
The speed of the slow ball as it reaches the ground, v = ?
The initial Kinetic energy of the snow ball, 
Potential energy of the snow ball at the given height, PE = mgh
Final Kinetic energy of the ball as it reaches the ground, 
a) Using the principle of energy conservation,

b) The speed remains v = 21.34 m/s since it is not a function of the angle of launch
c)The principle of energy conservation used cancels out the mass of the object, therefore the speed is not dependent on mass
v = 21. 34 m/s
Decrease. Gravity is stronger here on earth than on the moon.