1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Valentin [98]
4 years ago
10

A boy is running with a kinetic energy of 810 J. If the boy has a mass of 80 kg, what is his speed?

Physics
1 answer:
enot [183]4 years ago
8 0
My answer would be 4.5 m/s squared. 

Hope this helps!
You might be interested in
What is the equivalent resistance of the
BigorU [14]

Answer:

Approximately 111\; {\rm \Omega}.

Explanation:

It is given that R_{1} = 200\; {\Omega} and R_{2} = 250\; {\Omega} are connected in a circuit in parallel.

Assume that this circuit is powered with a direct current power supply of voltage V.

Since R_{1} and R_{2} are connected in parallel, the voltage across the two resistors would both be V. Thus, the current going through the two resistors would be (V / R_{1}) and (V / R_{2}), respectively.

Also because the two resistors are connected in parallel, the total current in this circuit would be the sum of the current in each resistor: I = (V / R_{1}) + (V / R_{2}).

In other words, if the voltage across this circuit is V, the total current in this circuit would be I = (V / R_{1}) + (V / R_{2}). The (equivalent) resistance R of this circuit would be:

\begin{aligned} R &= \frac{V}{I} \\ &= \frac{V}{(V / R_{1}) + (V / R_{2})} \\ &= \frac{1}{(1/R_{1}) + (1 / R_{2})}\end{aligned}.

Given that R_{1} = 200\; {\Omega} and R_{2} = 250\; {\Omega}:

\begin{aligned} R &= \frac{1}{(1/R_{1}) + (1 / R_{2})} \\ &= \frac{1}{(1/(200\: {\rm \Omega})) + (1/(250\; {\rm \Omega}))} \\ &\approx 111\; {\rm \Omega}\end{aligned}.

7 0
2 years ago
A small metal ball with a mass of m = 62.0 g is attached to a string of length l = 1.85 m. It is held at an angle of θ = 48.5° w
notka56 [123]

The distance x will the ball land after flies off with a horizontal initial velocity  is 3.0635 m.

<h3>What is mechanical energy?</h3>

The mechanical energy is the sum of kinetic energy and the potential energy of an object at any instant of time.

M.E = KE +PE

A small metal ball with a mass of m = 62.0 g is attached to a string of length l = 1.85 m. It is held at an angle of θ = 48.5° with respect to the vertical.

The ball is then released. When the rope is vertical, the ball collides head-on and perfectly elastically with an identical ball originally at rest. This second ball flies off with a horizontal initial velocity from a height of h = 3.76 m, and then later it hits the ground.

The conservation of energy principle states that total mechanical energy remains conserved in all situations where there is no external force acting on the system.

Kinetic energy  = Potential energy

1/2 mv² =mgh₁

The velocity at the bottom, when the height h = 5m, is

v= √2gh₁...................(1)

The vertical height h₁ = l- lcosθ

h₁ = l- lcosθ

h₁ = 1.85 - 1.85cos48.5°

h₁ =0.6241 m

Putting the values in equation (1), we get

v = √2x 9.81 x0.6241

v = 3.499 m/s

The horizontal distance traveled is

x = vt

x = v x √2h/g

Plug the values, we get

x =  3.499 x √2x3.76 / 9.81

x = 3.0635 m

Thus, the horizontal distance ball travels is  3.0635 m.

Learn more about mechanical energy.

brainly.com/question/13552918

#SPJ1

6 0
2 years ago
The cornea behaves as a thin lens of focal length approximately 1.80 {\rm cm}, although this varies a bit. The material of which
spayn [35]

Answer:

The height of the image will be "1.16 mm".

Explanation:

The given values are:

Object distance, u = 25 cm

Focal distance, f = 1.8 cm

On applying the lens formula, we get

⇒  \frac{1}{v} -\frac{1}{u} =\frac{1}{f}

On putting estimate values, we get

⇒  \frac{1}{v} -\frac{1}{(-25)} =\frac{1}{1.8}

⇒  \frac{1}{v} =\frac{1}{1.8} -\frac{1}{25}

⇒  v=1.94 \ cm

As a result, the image would be established mostly on right side and would be true even though v is positive.

By magnification,

m=\frac{v}{u} and m=\frac{h_{1}}{h_{0}}

⇒  \frac{v}{u} =\frac{h_{1}}{h_{0}}

⇒  \frac{1.94}{25}=\frac{{h_{1}}}{15}

⇒  {h_{1}}=1.16 \ mm

8 0
3 years ago
Explain what happens to the energy in a group in a system if one object loses energy according to the Law of Conservation of Ene
konstantin123 [22]

energy never disappears, for example, if you give some kinetic energy to a ball and it stops few seconds later, friction steals this energy to ground which ball was going on. "Law of Conservation of Energy" tell us that energy can't disappear

5 0
3 years ago
Speed is a component of skill related fitness what does speed enable you to do.
Mrrafil [7]

I'd say move faster, unless it's asking something else.

7 0
3 years ago
Other questions:
  • The distance between two successive maximaof
    7·1 answer
  • In the video, you saw that models must sometimes be changed. why does that happen?
    5·2 answers
  • A van slows down uniformly from 17 m/s to 0 m/s in 5 s. How far does it travel before stopping?
    6·1 answer
  • An atomic scientist was studying an atom and through experimentation found that the total negative charge of the area surroundin
    12·1 answer
  • Scientists aboard the International Space Station are threatened by a 2.8 kg meteor hurtling toward them at 5.4 x 103 m/s. They
    15·1 answer
  • If i like a boy and he dont like me what should i do? If we like each other what should i do?
    6·2 answers
  • How is a solution diluted?
    8·1 answer
  • Only the component of force perpendicular to the direction motion does work. true or false
    6·1 answer
  • Please answer both of them ill give you brainliest​
    12·1 answer
  • Please help me I’ll mark you as Brainly <br><br><br> PLSSSS
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!