To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



The answer to this question is c
"lets exercise and eat healthy foods together"<span />
I think it’s B hope it helps:)

GiveN:
- Initial velocity = 9.8 m/s²
- Accleration due to gravity = -9.8 m/s²
- Time taken = 1 s
To FinD:
- Final velocity of the ball?
Step-by-step Explanation:
Using the first Equation of motion,
⇒ v = u + gt
⇒ v = 9.8 + -9.8(1)
⇒ v = 0 m/s
The final velocity is hence <u>0</u><u> </u><u>m</u><u>/</u><u>s</u><u>.</u>
<h3>
Note:</h3>
- While solving questions of under gravity motions using equations of motion, remember the sign convection to avoid mistakes.
- You can consider positive above the ground and negative for towards it.
Solution= The answer is true